dc.contributor.author | Laurent-Gengoux, Camille |
dc.contributor.author | Miranda Galcerán, Eva |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I |
dc.date.accessioned | 2012-11-05T15:16:38Z |
dc.date.created | 2012-10-30 |
dc.date.issued | 2012-10-30 |
dc.identifier.citation | Laurent-Gengoux, C.; Miranda, E. "Coupling symmetries with Poisson structures". 2012. |
dc.identifier.uri | http://hdl.handle.net/2117/16840 |
dc.description.abstract | In this paper we study normal forms problems for integrable
systems on Poisson manifolds in the presence of additional symmetries.
The symmetries that we consider are encoded in actions of compact Lie
groups. The equivariant normal forms are obtained at the local level.
The existence of Weinstein’s splitting theorem for the integrable system
is also studied giving some examples in which such a splitting cannot
split. This splitting allows to decompose the integrable system locally as
a product of an integrable system on the symplectic leaf and a symplectic
leaf on the transversal. The problem of splitting for integrable systems
with additional symmetries is also considered |
dc.format.extent | 13 p. |
dc.language.iso | eng |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Spain |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ |
dc.subject | Àrees temàtiques de la UPC::Matemàtiques i estadística::Geometria |
dc.subject.lcsh | Geometry |
dc.title | Coupling symmetries with Poisson structures |
dc.type | External research report |
dc.subject.lemac | Geomtria |
dc.contributor.group | Universitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions |
dc.description.peerreviewed | Peer Reviewed |
dc.rights.access | Restricted access - author's decision |
local.identifier.drac | 11023646 |
dc.description.version | Preprint |
dc.date.lift | 10000-01-01 |
local.citation.author | Laurent-Gengoux, C.; Miranda, E. |
local.citation.publicationName | Coupling symmetries with Poisson structures |