Show simple item record

dc.contributor.authorLaurent-Gengoux, Camille
dc.contributor.authorMiranda Galcerán, Eva
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I
dc.date.accessioned2012-11-05T15:16:38Z
dc.date.created2012-10-30
dc.date.issued2012-10-30
dc.identifier.citationLaurent-Gengoux, C.; Miranda, E. "Coupling symmetries with Poisson structures". 2012.
dc.identifier.urihttp://hdl.handle.net/2117/16840
dc.description.abstractIn this paper we study normal forms problems for integrable systems on Poisson manifolds in the presence of additional symmetries. The symmetries that we consider are encoded in actions of compact Lie groups. The equivariant normal forms are obtained at the local level. The existence of Weinstein’s splitting theorem for the integrable system is also studied giving some examples in which such a splitting cannot split. This splitting allows to decompose the integrable system locally as a product of an integrable system on the symplectic leaf and a symplectic leaf on the transversal. The problem of splitting for integrable systems with additional symmetries is also considered
dc.format.extent13 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Geometria
dc.subject.lcshGeometry
dc.titleCoupling symmetries with Poisson structures
dc.typeExternal research report
dc.subject.lemacGeomtria
dc.contributor.groupUniversitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions
dc.description.peerreviewedPeer Reviewed
dc.rights.accessRestricted access - author's decision
local.identifier.drac11023646
dc.description.versionPreprint
dc.date.lift10000-01-01
local.citation.authorLaurent-Gengoux, C.; Miranda, E.
local.citation.publicationNameCoupling symmetries with Poisson structures


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record