Show simple item record

dc.contributor.authorSaborío González, Maricruz
dc.contributor.authorSvelic, Petra
dc.contributor.authorCasanovas Salas, Jordi
dc.contributor.authorRuano Torres, Guillem
dc.contributor.authorPérez Madrigal, María del Mar
dc.contributor.authorFranco García, María Lourdes
dc.contributor.authorTorras Costa, Juan
dc.contributor.authorEstrany Coda, Francesc
dc.contributor.authorAlemán Llansó, Carlos
dc.contributor.otherUniversitat Politècnica de Catalunya. Doctorat en Polímers i Biopolímers
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Química
dc.identifier.citationSaborío, M. [et al.]. Hydrogels for flexible and compressible free standing cellulose supercapacitors. "European polymer journal", 1 Setembre 2019, vol. 118, p. 347-357.
dc.description.abstractCellulose-based supercapacitors display important advantages in comparison with devices fabricated with other materials, regarding environmental friendliness, flexibility, cost and versatility. Recent progress in the field has been mainly focused on the utilization of cellulose fibres as: structural mechanical reinforcement of electrodes; precursors of electrically active carbon-based materials; or primary electrolytes that act as reservoirs of secondary electrolytes. In this work, a flexible, lightweight, robust, portable and manageable all-carboxymethyl cellulose symmetric supercapacitor has been obtained by assembling two electrodes based on carboxymethyl cellulose hydrogels to a solid electrolytic medium formulated with the same material. Hydrogels, which were made by cross-linking carboxymethyl cellulose paste with citric acid in water, rendered not only effective solid electrolytic media by simply loading NaCl but also electroactive electrodes. For the latter, conducting polymer microparticles, which were loaded into the hydrogel network during the physical cross-linking step, were appropriately connected through the in situ anodic polymerization of a similar conducting polymer in aqueous medium, thus creating conduction paths. The performance of the assembled supercapacitors has been proved by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. This design opens a new window for the green and mass production of flexible cellulose-based supercapacitors
dc.format.extent11 p.
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.subjectÀrees temàtiques de la UPC::Enginyeria química
dc.subject.lcshEnergy storage
dc.subject.lcshConducting polymers
dc.subject.otherConducting polymer
dc.subject.otherEnergy storage
dc.subject.otherFlexible electrodes
dc.subject.otherIn situ polymerization
dc.subject.otherWearable electronics
dc.titleHydrogels for flexible and compressible free standing cellulose supercapacitors
dc.subject.lemacMaterials conductors
dc.subject.lemacEnergia -- Emmagatzematge
dc.subject.lemacPolímers conductors
dc.contributor.groupUniversitat Politècnica de Catalunya. IMEM-BRT- Innovation in Materials and Molecular Engineering - Biomaterials for Regenerative Therapies
dc.contributor.groupUniversitat Politècnica de Catalunya. PSEP - Polimers Sintètics: Estructura i Propietats. Polimers Biodegradables.
dc.description.peerreviewedPeer Reviewed
dc.rights.accessRestricted access - publisher's policy
dc.description.versionPostprint (author's final draft)
local.citation.authorSaborío, M.; Svelic, P.; Casanovas Salas, Jordi; Ruano, G.; Pérez-Madrigal, M.; Franco, L.; Torras, J.; Estrany, F.; Aleman, C.
local.citation.publicationNameEuropean polymer journal

Files in this item


This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain