Show simple item record

dc.contributor.authorBastien, Guy
dc.contributor.authorMañosa Fernández, Víctor
dc.contributor.authorRogalski, Marc
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada III
dc.date.accessioned2012-10-24T16:10:14Z
dc.date.available2012-10-24T16:10:14Z
dc.date.created2012-10
dc.date.issued2012-10
dc.identifier.citationBastien, G.; Mañosa, V.; Rogalski, M. "Periodic orbits of integrable birational maps on the plane: blending dynamics and algebraic geometry, the Lyness' case". 2012.
dc.identifier.urihttp://hdl.handle.net/2117/16795
dc.description.abstractContingut del Pòster presentat al congrés New Trends in Dynamical Systems
dc.format.extent1 p.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Geometria::Geometria algebraica
dc.subject.lcshGeometry, Algebraic
dc.subject.otherPeriodic orbits
dc.subject.otherBirational maps
dc.subject.otherIntegrability
dc.subject.otherNonlinear dynamics
dc.subject.otherElliptic curves.
dc.titlePeriodic orbits of integrable birational maps on the plane: blending dynamics and algebraic geometry, the Lyness' case
dc.title.alternativeIntegrable birational maps on the plane: blending dynamics and algebraic geometry
dc.typeOther
dc.subject.lemacGeometria algebraica
dc.contributor.groupUniversitat Politècnica de Catalunya. CoDAlab - Control, Modelització, Identificació i Aplicacions
dc.description.peerreviewedPeer Reviewed
dc.subject.amsClassificació AMS::14 Algebraic geometry
dc.relation.publisherversionhttp://www.gsd.uab.cat/ntds2012/pdf/NTDS2012ManosaVictor.pdf
dc.rights.accessOpen Access
local.identifier.drac10963666
dc.description.versionPreprint
local.citation.authorBastien, G.; Mañosa, V.; Rogalski, M.
local.citation.publicationNamePeriodic orbits of integrable birational maps on the plane: blending dynamics and algebraic geometry, the Lyness' case


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder