Beyond cognition and affect: sensing the unconscious
View/Open
Beyond cognition and affect sensing the unconscious.pdf (471,7Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/167819
Document typeArticle
Defense date2015-03-04
PublisherTaylor & Francis
Rights accessRestricted access - publisher's policy
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
In the past decade, research on human-computer interaction has embraced psychophysiological user interfaces that enhance awareness of computers about conscious cognitive and affective states of users and increase their adaptive capabilities. Still, human experience is not limited to the levels of cognition and affect but extends further into the realm of universal instincts and innate behaviours that form the collective unconscious. Patterns of instinctual traits shape archetypes that represent images of the unconscious. This study investigated whether seven various archetypal experiences of users lead to recognisable patterns of physiological responses. More specifically, the potential of predicting the archetypal experiences by a computer from physiological data collected with wearable sensors was evaluated. The subjects were stimulated to feel the archetypal experiences and conscious emotions by means of film clips. The physiological data included measurements of cardiovascular and electrodermal activities. Statistical analysis indicated a significant relationship between the archetypes portrayed in the videos and the physiological responses. Data mining methods enabled us to create between-subject prediction models that were capable of classifying four archetypes with an accuracy of up to 57.1%. Further analysis suggested that classification performance could be improved up to 70.3% in the case of seven archetypes by using within-subject models.
CitationIvonin, L. [et al.]. Beyond cognition and affect: sensing the unconscious. "Behaviour & information technology", 4 Març 2015, vol. 34, núm. 3, p. 220-238.
ISSN0144-929X
Collections
- Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial - Articles de revista [1.432]
- Departament d'Organització d'Empreses - Articles de revista [854]
- GREC - Grup de Recerca en Enginyeria del Coneixement - Articles de revista [95]
- ISSET - Integrated Smart Sensors and Health Technologies - Articles de revista [23]
Files | Description | Size | Format | View |
---|---|---|---|---|
Beyond cognitio ... ensing the unconscious.pdf | 471,7Kb | Restricted access |