Show simple item record

dc.contributorVellido Alcacena, Alfredo
dc.contributorBlankertz, Benjamin
dc.contributor.authorRapp, Rachel Elizabeth
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Ciències de la Computació
dc.date.accessioned2019-08-29T08:15:14Z
dc.date.available2019-08-29T08:15:14Z
dc.date.issued2019-07-01
dc.identifier.urihttp://hdl.handle.net/2117/167803
dc.description.abstractOne of the major limitations of brain-computer interfaces (BCI) is the need for a long and tedious calibration period in order for a subject to become proficient with the system. A principal challenge in training a BCI classifier that should work without user-specific calibration is that the training set is not large enough to capture the spectrum of potential signals. In this thesis, a new method to reduce BCI calibration time is proposed. Since one cause for subject-to-subject variability is the anatomical differences between subjects, we aimed to generate artificial data which would resemble the signals obtained from a new subject with a different cortical anatomy. This would allow for a large expansion of the training set size. To generate the artificial data we begin by decomposing the original signals, localizing the most prominent sources and shifting their orientation relative to the cortex. New signals are then regenerated using different head models. Training a classifier on the enriched training set should result in better generalizability. Although inter-subject classification ultimately fell outside the scope of this thesis, we consider intra-subject classification as a starting point for consideration of the methods applied. This ultimately lays the foundation for a much greater field of research involving the use of artificial data generation to combat the calibration time issue for BCIs.
dc.language.isoeng
dc.publisherUniversitat Politècnica de Catalunya
dc.subjectÀrees temàtiques de la UPC::Informàtica
dc.subject.lcshBrain-computer interfaces
dc.subject.lcshNeural networks (Computer science)
dc.subject.otherbrain-computer interfaces
dc.subject.otherBCI
dc.subject.otherelectroencephalography
dc.subject.otherEEG
dc.subject.otherartificial data generation
dc.subject.otherADG
dc.subject.othermotor imagery
dc.subject.othersubject-to-subject variability
dc.titleA framework for artificial data generation based on anatomical differences for electroencephalography-based brain-computer interfaces
dc.title.alternativeEnhancing subject-independent classification by forcing anatomical invariance
dc.typeMaster thesis
dc.subject.lemacInterfícies cervell-ordinador
dc.subject.lemacXarxes neuronals (Informàtica)
dc.identifier.slug143659
dc.rights.accessOpen Access
dc.date.updated2019-07-08T04:00:21Z
dc.audience.educationlevelMàster
dc.audience.mediatorFacultat d'Informàtica de Barcelona
dc.audience.degreeMÀSTER UNIVERSITARI EN INTEL·LIGÈNCIA ARTIFICIAL (Pla 2017)
dc.contributor.covenanteeTechnische Universität Berlin


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record