Mostra el registre d'ítem simple

dc.contributor.authorFromant, Guillaume
dc.contributor.authorHurther, David
dc.contributor.authorVan der Zanden, Joep
dc.contributor.authorVan Der A, Dominic
dc.contributor.authorCáceres Rabionet, Iván
dc.contributor.authorO'Donoghue, Tom
dc.contributor.authorRibberink, Jan
dc.contributor.otherUniversitat Politècnica de Catalunya. Laboratori d'Enginyeria Marítima
dc.date.accessioned2019-08-27T13:37:12Z
dc.date.available2019-08-27T13:37:12Z
dc.date.issued2019-01
dc.identifier.citationFromant, G. [et al.]. Wave boundary layer hydrodynamics and sheet flow properties under large-scale plunging-type breaking waves. "Journal of geophysical research: oceans", Gener 2019, vol. 124, núm. 1, p. 75-98.
dc.identifier.issn2169-9291
dc.identifier.urihttp://hdl.handle.net/2117/167739
dc.description.abstractWave boundary layer (WBL) dynamics are measured with an Acoustic Concentration and Velocity Profiler (ACVP) across the sheet flow-dominated wave-breaking region of regular large-scale waves breaking as a plunger over a developing breaker bar. Acoustic sheet flow measurements are first evaluated quantitatively in comparison to Conductivity Concentration Meter (CCM+) data used as a reference. The near-bed orbital velocity field exhibits expected behaviors in terms of wave shape, intrawave WBL thickness, and velocity phase leads. The observed fully turbulent flow regime all across the studied wave-breaking region supports the model-predicted transformation of free-stream velocity asymmetry into near-bed velocity skewness inside the WBL. Intrawave concentration dynamics reveal the existence of a lower pickup layer and an upper sheet flow layer similar to skewed oscillatory sheet flows, and with similar characteristics in terms of erosion depth and sheet flow layer thickness. Compared to the shoaling region, differences in terms of sheet flow and hydrodynamic properties of the flow are observed at the plunge point, attributed to the locally enhanced wave breaker turbulence. The ACVP-measured total sheet flow transport rate is decomposed into its current-, wave-, and turbulence-driven components. In the shoaling region, the sand transport is found to be fully dominated by the onshore skewed wave-driven component with negligible phase lag effects. In the outer surf zone, the total net flux exhibits a three-layer vertical structure typical of skewed oscillatory sheet flows. However, in the present experiments this structure originates from offshore-directed undertow-driven flux, rather than from phase lag effects.
dc.format.extent24 p.
dc.language.isoeng
dc.publisherWiley
dc.subjectÀrees temàtiques de la UPC::Física::Física de fluids
dc.subject.lcshTurbulence--Mathematical models
dc.subject.lcshWaves--Mathematical models
dc.titleWave boundary layer hydrodynamics and sheet flow properties under large-scale plunging-type breaking waves
dc.typeArticle
dc.subject.lemacOnades -- Models matemàtics
dc.contributor.groupUniversitat Politècnica de Catalunya. LIM/UPC - Laboratori d'Enginyeria Marítima
dc.identifier.doi10.1029/2018JC014406
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018JC014406
dc.rights.accessOpen Access
local.identifier.drac23943632
dc.description.versionPostprint (published version)
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/654110/EU/HYDRALAB+ Adapting to climate change/HYDRALAB-PLUS
local.citation.authorFromant, G.; Hurther, D.; Van der Zanden, J.; Van Der A, D.; Caceres, I.; O'Donoghue, T.; Ribberink, J.
local.citation.publicationNameJournal of geophysical research: oceans
local.citation.volume124
local.citation.number1
local.citation.startingPage75
local.citation.endingPage98


Fitxers d'aquest items

Thumbnail

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple