Productive programming of GPU clusters with OmpSs
dc.contributor.author | Bueno Hedo, Javier |
dc.contributor.author | Planas, Judit |
dc.contributor.author | Duran González, Alejandro |
dc.contributor.author | Badia Sala, Rosa Maria |
dc.contributor.author | Martorell Bofill, Xavier |
dc.contributor.author | Ayguadé Parra, Eduard |
dc.contributor.author | Labarta Mancho, Jesús José |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors |
dc.date.accessioned | 2012-10-17T10:52:53Z |
dc.date.available | 2012-10-17T10:57:37Z |
dc.date.created | 2012 |
dc.date.issued | 2012 |
dc.identifier.citation | Bueno, J. [et al.]. Productive programming of GPU clusters with OmpSs. A: IEEE International Parallel and Distributed Processing Symposium. "2012 IEEE 26th International Parallel & Distributed Processing Symposium (IPDPS) 21-25 May 2012: Shanghai, China". Shanghai: 2012, p. 557-568. |
dc.identifier.isbn | 978-1-4673-0975-2 |
dc.identifier.uri | http://hdl.handle.net/2117/16739 |
dc.description.abstract | Clusters of GPUs are emerging as a new computational scenario. Programming them requires the use of hybrid models that increase the complexity of the applications, reducing the productivity of programmers. We present the implementation of OmpSs for clusters of GPUs, which supports asynchrony and heterogeneity for task parallelism. It is based on annotating a serial application with directives that are translated by the compiler. With it, the same program that runs sequentially in a node with a single GPU can run in parallel in multiple GPUs either local (single node) or remote (cluster of GPUs). Besides performing a task-based parallelization, the runtime system moves the data as needed between the different nodes and GPUs minimizing the impact of communication by using affinity scheduling, caching, and by overlapping communication with the computational task. We show several applicactions programmed with OmpSs and their performance with multiple GPUs in a local node and in remote nodes. The results show good tradeoff between performance and effort from the programmer. |
dc.format.extent | 12 p. |
dc.language.iso | eng |
dc.subject | Àrees temàtiques de la UPC::Informàtica::Arquitectura de computadors::Arquitectures distribuïdes |
dc.subject.lcsh | Computational grids (Computer systems) |
dc.title | Productive programming of GPU clusters with OmpSs |
dc.type | Conference lecture |
dc.subject.lemac | Computació distribuïda |
dc.contributor.group | Universitat Politècnica de Catalunya. CAP - Grup de Computació d'Altes Prestacions |
dc.identifier.doi | 10.1109/IPDPS.2012.58 |
dc.description.peerreviewed | Peer Reviewed |
dc.relation.publisherversion | http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6267858 |
dc.rights.access | Restricted access - publisher's policy |
local.identifier.drac | 10962782 |
dc.description.version | Postprint (published version) |
dc.relation.projectid | info:eu-repo/grantAgreement/EC/FP7/248647/EU/ENabling technologies for a programmable many-CORE/ENCORE |
dc.date.lift | 10000-01-01 |
local.citation.author | Bueno, J.; Planas, J.; Duran, A.; Badia, R.; Martorell, X.; Ayguade, E.; Labarta, J. |
local.citation.contributor | IEEE International Parallel and Distributed Processing Symposium |
local.citation.pubplace | Shanghai |
local.citation.publicationName | 2012 IEEE 26th International Parallel & Distributed Processing Symposium (IPDPS) 21-25 May 2012: Shanghai, China |
local.citation.startingPage | 557 |
local.citation.endingPage | 568 |
Files in this item
This item appears in the following Collection(s)
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder