Computation of analytical solutions of the relative motion about a Keplerian elliptic orbit
View/Open
computation.pdf (545,9Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/16726
Document typeArticle
Defense date2012-01
Rights accessRestricted access - publisher's policy
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
The purpose of this paper is to obtain a third-order expression, for the in-plane and out-of-plane amplitudes, of the solutions of the elliptic Hill–Clohessy–Wiltshire non-linear equations. The resulting third-order solution is explicit in terms of true anomaly. The coefficients of the expansions are given as functions of the eccentricity e of the orbit of the leader (i.e., are valid for all values of e). For e=0 we recover the solution given by Richardson and Mitchell for the circular case; for e≠0 the linear terms of the solution recover the solution found by Lawden for the linearised elliptic HCW equations, also known as the Tschauner–Hempel equations. In the last part of the paper we explain how a formal series solution of the elliptic HCW non-linear equations (in powers of the two amplitudes and the eccentricity) can be obtained, using the Lindstedt–Poincaré procedure.
CitationRen, Y. [et al.]. Computation of analytical solutions of the relative motion about a Keplerian elliptic orbit. "Acta astronautica", Gener 2012, vol. 81, núm. 1, p. 186-199.
ISSN0094-5765
Publisher versionhttp://www.sciencedirect.com/science/article/pii/S0094576512002895
Files | Description | Size | Format | View |
---|---|---|---|---|
computation.pdf![]() | 545,9Kb | Restricted access |