Collaborative informed gateway selection in large-scale and heterogeneous
View/Open
IM2019.pdf (493,7Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/167065
Document typeConference report
Defense date2019
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
Rights accessRestricted access - publisher's policy
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
In wireless community access networks, clients tend to reach the Internet through multiple gateway nodes instead of a single default gateway. The mapping of gateways to clients should take into account the perception of network performance from each client node. Network conditions and traffic load can fluctuate and make repeated client-gateway measurements necessary. However, frequent measurements would result in a high communication overhead as well as high processing overhead in gateways and clients. We propose a lightweight client-side gateway selection algorithm by crowd-sourcing monitoring information from neighbor clients, without requiring explicit topology information or a detailed view of the network, while providing an accurate selection as compared to an ideal omniscient approach. Our collaborative gateway selection algorithm achieves good end-to-end performance, such as low latency perceived at client nodes, and fair distribution of the measurements over the gateway nodes. The number of performance measurements triggered by clients are reduced drastically, from n down to 2 measurements per node in each period. An experimental evaluation of our approach shows more than 80% similarity estimation of the gateway performance in the majority of the considered cases. We propose two variants of the gateway selection algorithm, collaborative-best and collaborative-fair, which yield near optimal gateway selection while utilizing partial information.
CitationBatbayar, K. [et al.]. Collaborative informed gateway selection in large-scale and heterogeneous. A: IFIP/IEEE International Symposium on Integrated Network Management. "2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM 2019): Arlington, Virginia, USA: 8-12 April 2019". Institute of Electrical and Electronics Engineers (IEEE), 2019, p. 337-345.
ISBN9781728106182
Publisher versionhttps://ieeexplore.ieee.org/document/8717879
Other identifiershttp://dl.ifip.org/db/conf/im/im2019/189253.pdf
Files | Description | Size | Format | View |
---|---|---|---|---|
IM2019.pdf | 493,7Kb | Restricted access |