dc.contributor.author | Salvador Aguilera, Amaia |
dc.contributor.author | Drozdzal, Michal |
dc.contributor.author | Giró Nieto, Xavier |
dc.contributor.author | Romero, Adriana |
dc.contributor.other | Universitat Politècnica de Catalunya. Doctorat en Teoria del Senyal i Comunicacions |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions |
dc.date.accessioned | 2019-07-26T09:31:22Z |
dc.date.available | 2019-07-26T09:31:22Z |
dc.date.issued | 2019 |
dc.identifier.citation | Salvador, A. [et al.]. Inverse cooking: recipe generation from food images. A: IEEE Conference on Computer Vision and Pattern Recognition. "CVPR 2019: Conference on Computer Vision and Pattern Recognition: Long Beach, CA: June 16-20, 2019". Computer Vision Foundation, 2019, p. 10453-10462. |
dc.identifier.uri | http://hdl.handle.net/2117/166916 |
dc.description.abstract | People enjoy food photography because they appreciate food. Behind each meal there is a story described in a complex recipe and, unfortunately, by simply looking at a food image we do not have access to its preparation process. Therefore, in this paper we introduce an inverse cooking system that recreates cooking recipes given food images. Our system predicts ingredients as sets by means of a novel architecture, modeling their dependencies without imposing any order, and then generates cooking instructions by attending to both image and its inferred ingredients simultaneously. We extensively evaluate the whole system on the large-scale Recipe1M dataset and show that (1) we improve performance w.r.t. previous baselines for ingredient prediction; (2) we are able to obtain high quality recipes by leveraging both image and ingredients; (3) our system is able to produce more compelling recipes than retrieval-based approaches according to human judgment. We make code and models publicly available. |
dc.format.extent | 10 p. |
dc.language.iso | eng |
dc.publisher | Computer Vision Foundation |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Spain |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ |
dc.subject | Àrees temàtiques de la UPC::Enginyeria de la telecomunicació::Processament del senyal::Reconeixement de formes |
dc.subject.lcsh | Computer vision |
dc.subject.lcsh | Pattern recognition systems |
dc.subject.other | Cooking |
dc.subject.other | Recipe |
dc.subject.other | Generative models |
dc.subject.other | im2recipe |
dc.title | Inverse cooking: recipe generation from food images |
dc.type | Conference report |
dc.subject.lemac | Reconeixement de formes (Informàtica) |
dc.subject.lemac | Visió per ordinador |
dc.contributor.group | Universitat Politècnica de Catalunya. GPI - Grup de Processament d'Imatge i Vídeo |
dc.description.peerreviewed | Peer Reviewed |
dc.relation.publisherversion | http://openaccess.thecvf.com/content_CVPR_2019/html/Salvador_Inverse_Cooking_Recipe_Generation_From_Food_Images_CVPR_2019_paper.html |
dc.rights.access | Open Access |
local.identifier.drac | 25441675 |
dc.description.version | Postprint (published version) |
dc.relation.projectid | info:eu-repo/grantAgreement/MINECO//TEC2013-43935-R/ES/PROCESADO DE INFORMACION HETEROGENEA Y SEÑALES EN GRAFOS PARA BIG DATA. APLICACION EN CRIBADO DE ALTO RENDIMIENTO, TELEDETECCION, MULTIMEDIA Y HCI./ |
dc.relation.projectid | info:eu-repo/grantAgreement/MINECO/1PE/TEC2016-75976-R |
local.citation.author | Salvador, A.; Drozdzal, M.; Giro, X.; Romeroa, A. |
local.citation.contributor | IEEE Conference on Computer Vision and Pattern Recognition |
local.citation.publicationName | CVPR 2019: Conference on Computer Vision and Pattern Recognition: Long Beach, CA: June 16-20, 2019 |
local.citation.startingPage | 10453 |
local.citation.endingPage | 10462 |