A tractable closed form approximation of the ergodic rate in Poisson cellular networks
View/Open
Cita com:
hdl:2117/166890
Document typeArticle
Defense date2019-07
Rights accessOpen Access
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
The employment of stochastic geometry for the analysis and design of ultra dense networks (UDNs) has provided significant insights into network densification. In addition to the characterization of the network performance and behavior, these tools can also be exploited toward solving complex optimization problems that could maximize the capacity benefits arising in UDNs. However, this is preconditioned on the existence of tractable closed form expressions for the considered figures of merit. In this course, the present paper introduces an accurate approximation for the moment generating function (MGF) of the aggregate other-cell interference created by base stations whose positions follow a Poisson point process of given spatial density. Given the pivotal role of the MGF of the aggregate interference in stochastic geometry and the tractability of the derived MGF, the latter can be employed to substantially simplify ensuing stochastic geometry analyses. Subsequently, the present paper employs the introduced MGF to provide closed form expressions for the downlink ergodic capacity for the interference limited case, and validates the accuracy of these expressions by the use of extensive Monte Carlo simulations. The derived expressions depend on the density of users and base stations, setting out a densification road map for network operators and designers of significant value.
CitationAravanis, A. [et al.]. A tractable closed form approximation of the ergodic rate in Poisson cellular networks. "Eurasip journal on wireless communication and networking", Juliol 2019, vol. 2019, núm. 187, p. 1-16.
ISSN1687-1499
Files | Description | Size | Format | View |
---|---|---|---|---|
ergodic_rate_poisson_networks_publicado.pdf | versión publicada del artículo | 1,644Mb | View/Open |