Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.724 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • SISCOM - Smart Services for Information Systems and Communication Networks
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • SISCOM - Smart Services for Information Systems and Communication Networks
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Efficient k-anonymous microaggregation of multivariate numerical data via principal component analysis

Thumbnail
View/Open
INS-D-18-1455R1-38-65.pdf (1,792Mb)
Share:
 
 
10.1016/j.ins.2019.07.042
 
  View Usage Statistics
Cita com:
hdl:2117/166168

Show full item record
Rebollo-Monedero, David
Mezher, Ahmad MohamadMés informació
Casanova, Xavier
Forné Muñoz, JorgeMés informacióMés informacióMés informació
Soriano Ibáñez, MiguelMés informacióMés informacióMés informació
Document typeArticle
Defense date2019-07-09
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
ProjectCIPSEC - Enhancing Critical Infrastructure Protection with innovative SECurity framework (EC-H2020-700378)
MICROAGREGACION ANONIMA EN ENCUESTAS DEMOGRAFICAS A GRAN ESCALA (MINECO-TIN2014-58259-JIN)
MONITORIZACION DE INCIDENTES EN COMUNIDADES INTELIGENTES (MINECO-TEC2014-54335-C4-1-R)
Abstract
k-Anonymous microaggregation is a widespread technique to address the problem of protecting the privacy of the respondents involved beyond the mere suppression of their identifiers, in applications where preserving the utility of the information disclosed is critical. Unfortunately, microaggregation methods with high data utility may impose stringent computational demands when dealing with datasets containing a large number of records and attributes. This work proposes and analyzes various anonymization methods which draw upon the algebraic-statistical technique of principal component analysis (PCA), in order to effectively reduce the number of attributes processed, that is, the dimension of the multivariate microaggregation problem at hand. By preserving to a high degree the energy of the numerical dataset and carefully choosing the number of dominant components to process, we manage to achieve remarkable reductions in running time and memory usage with negligible impact in information utility. Our methods are readily applicable to high-utility SDC of large-scale datasets with numerical demographic attributes.
Description
© <2019>. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
CitationRebollo-Monedero, D. [et al.]. Efficient k-anonymous microaggregation of multivariate numerical data via principal component analysis. "Information sciences", 9 Juliol 2019, vol. 503, p. 417-443. 
URIhttp://hdl.handle.net/2117/166168
DOI10.1016/j.ins.2019.07.042
ISSN0020-0255
Publisher versionhttps://www.sciencedirect.com/science/article/pii/S0020025519306474
Collections
  • SISCOM - Smart Services for Information Systems and Communication Networks - Articles de revista [31]
  • Departament d'Enginyeria Telemàtica - Articles de revista [434]
  • ISG - Grup de Seguretat de la Informació - Articles de revista [50]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
INS-D-18-1455R1-38-65.pdf1,792MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina