Show simple item record

dc.contributorHuemer, Clemens
dc.contributor.authorTorra Clotet, Ferran
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtiques
dc.date.accessioned2019-07-11T12:12:47Z
dc.date.available2019-07-11T12:12:47Z
dc.date.issued2019-07
dc.identifier.urihttp://hdl.handle.net/2117/166052
dc.description.abstractThe Erdős-Szekeres theorem is a famous result in Discrete geometry that inspired a lot of research and motivated new problems. The theorem states that for every integer n ≥ 3 there is another integer N_0 such that any set of N ≥ N_0 points in general position in the plane contains the vertex set of a convex n-gon. Related is the question on the number of empty (without interior points) convex k-gons, X_k, in a set of n points, for k=3,4,5,... . A known result states that the alternating sum of the X_k's only depends on the number n of points, but not on the precise positions of the points. A proof was given by Pinchasi, Radoičić, and Sharir in 2006. In this thesis we extend this result to the numbers of convex k-gons with l interior points, X_{k,l}, and provide several formulas involving these numbers. All these formulas only depend on the number n of points of the set. The proofs are based on a continuous motion argument. We further show that with this proof technique at most n-2 linearly independent equations for the X_{k,l}'s can be obtained and we provide n-2 such equations. We also obtain several other formulas, building upon a work by Huemer, Oliveros, Pérez-Lantero, and Vogtenhuber. The obtained formulas could further be useful to solve some open problems related to the Erdős-Szekeres theorem. This thesis also surveys several known results and questions related to this classical problem for point sets in the plane.
dc.language.isoeng
dc.publisherUniversitat Politècnica de Catalunya
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Geometria
dc.subject.lcshDiscrete geometry
dc.subject.otherErdős-Szekeres theorem
dc.subject.otherConvex polygons
dc.subject.otherDiscrete geometry
dc.titleCombinatorial properties of convex polygons in point sets
dc.typeMaster thesis
dc.subject.lemacGeometria discreta
dc.subject.amsClassificació AMS::52 Convex and discrete geometry::52C Discrete geometry
dc.identifier.slugFME-1797
dc.rights.accessOpen Access
dc.date.updated2019-07-10T05:29:45Z
dc.audience.educationlevelMàster
dc.audience.mediatorUniversitat Politècnica de Catalunya. Facultat de Matemàtiques i Estadística
dc.audience.degreeMÀSTER UNIVERSITARI EN MATEMÀTICA AVANÇADA I ENGINYERIA MATEMÀTICA (Pla 2010)


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record