dc.contributor | Huemer, Clemens |
dc.contributor.author | Torra Clotet, Ferran |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament de Matemàtiques |
dc.date.accessioned | 2019-07-11T12:12:47Z |
dc.date.available | 2019-07-11T12:12:47Z |
dc.date.issued | 2019-07 |
dc.identifier.uri | http://hdl.handle.net/2117/166052 |
dc.description.abstract | The Erdős-Szekeres theorem is a famous result in Discrete geometry that inspired a lot of research and motivated new problems. The theorem states that for every integer n ≥ 3 there is another integer N_0 such that any set of N ≥ N_0 points in general position in the plane contains the vertex set of a convex n-gon. Related is the question on the number of empty (without interior points) convex k-gons, X_k, in a set of n points, for k=3,4,5,... . A known result states that the alternating sum of the X_k's only depends on the number n of points, but not on the precise positions of the points. A proof was given by Pinchasi, Radoičić, and Sharir in 2006. In this thesis we extend this result to the numbers of convex k-gons with l interior points, X_{k,l}, and provide several formulas involving these numbers. All these formulas only depend on the number n of points of the set. The proofs are based on a continuous motion argument. We further show that with this proof technique at most n-2 linearly independent equations for the X_{k,l}'s can be obtained and we provide n-2 such equations. We also obtain several other formulas, building upon a work by Huemer, Oliveros, Pérez-Lantero, and Vogtenhuber. The obtained formulas could further be useful to solve some open problems related to the Erdős-Szekeres theorem. This thesis also surveys several known results and questions related to this classical problem for point sets in the plane. |
dc.language.iso | eng |
dc.publisher | Universitat Politècnica de Catalunya |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ |
dc.subject | Àrees temàtiques de la UPC::Matemàtiques i estadística::Geometria |
dc.subject.lcsh | Discrete geometry |
dc.subject.other | Erdős-Szekeres theorem |
dc.subject.other | Convex polygons |
dc.subject.other | Discrete geometry |
dc.title | Combinatorial properties of convex polygons in point sets |
dc.type | Master thesis |
dc.subject.lemac | Geometria discreta |
dc.subject.ams | Classificació AMS::52 Convex and discrete geometry::52C Discrete geometry |
dc.identifier.slug | FME-1797 |
dc.rights.access | Open Access |
dc.date.updated | 2019-07-10T05:29:45Z |
dc.audience.educationlevel | Màster |
dc.audience.mediator | Universitat Politècnica de Catalunya. Facultat de Matemàtiques i Estadística |
dc.audience.degree | MÀSTER UNIVERSITARI EN MATEMÀTICA AVANÇADA I ENGINYERIA MATEMÀTICA (Pla 2010) |