Show simple item record

dc.contributor.authorTorres Sánchez, Alejandro
dc.contributor.authorMillán, Daniel
dc.contributor.authorArroyo Balaguer, Marino
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental
dc.date.accessioned2019-07-05T10:49:24Z
dc.date.available2020-02-10T01:25:50Z
dc.date.issued2019-08-10
dc.identifier.citationTorres, A.; Millán, D.; Arroyo, M. Modelling fluid deformable surfaces with an emphasis on biological interfaces. "Journal of fluid mechanics", 10 Agost 2019, vol. 872, p. 218-271.
dc.identifier.issn0022-1120
dc.identifier.otherhttps://arxiv.org/pdf/1812.02837.pdf
dc.identifier.urihttp://hdl.handle.net/2117/165676
dc.descriptionThis article has been published in a revised form in Journal of fluid mechanics, http://dx.doi.org/10.1017/jfm.2019.341. This version is free to view and download for private research and study only. Not for re-distribution, re-sale or use in derivative works. © 2019
dc.description.abstractFluid deformable surfaces are ubiquitous in cell and tissue biology, including lipid bilayers, the actomyosin cortex or epithelial cell sheets. These interfaces exhibit a complex interplay between elasticity, low Reynolds number interfacial hydrodynamics, chemistry and geometry, and govern important biological processes such as cellular traffic, division, migration or tissue morphogenesis. To address the modelling challenges posed by this class of problems, in which interfacial phenomena tightly interact with the shape and dynamics of the surface, we develop a general continuum mechanics and computational framework for fluid deformable surfaces. The dual solid–fluid nature of fluid deformable surfaces challenges classical Lagrangian or Eulerian descriptions of deforming bodies. Here, we extend the notion of arbitrarily Lagrangian–Eulerian (ALE) formulations, well-established for bulk media, to deforming surfaces. To systematically develop models for fluid deformable surfaces, which consistently treat all couplings between fields and geometry, we follow a nonlinear Onsager formalism according to which the dynamics minimizes a Rayleighian functional where dissipation, power input and energy release rate compete. Finally, we propose new computational methods, which build on Onsager’s formalism and our ALE formulation, to deal with the resulting stiff system of higher-order partial differential equations. We apply our theoretical and computational methodology to classical models for lipid bilayers and the cell cortex. The methods developed here allow us to formulate/simulate these models in their full three-dimensional generality, accounting for finite curvatures and finite shape changes.
dc.format.extent54 p.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica aplicada a les ciències
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica
dc.subject.lcshBiomathematics
dc.subject.lcshNumerical analysis
dc.subject.otherFluid interfaces
dc.subject.otherArbitrarily Lagrangian-Eulerian
dc.subject.otherSubdivision surfaces
dc.subject.otherLipid membranes
dc.subject.otherActin cortex
dc.titleModelling fluid deformable surfaces with an emphasis on biological interfaces
dc.typeArticle
dc.subject.lemacBiomatemàtica
dc.subject.lemacAnàlisi numèrica
dc.contributor.groupUniversitat Politècnica de Catalunya. LACÀN - Mètodes Numèrics en Ciències Aplicades i Enginyeria
dc.identifier.doi10.1017/jfm.2019.341
dc.description.peerreviewedPeer Reviewed
dc.subject.amsClassificació AMS::92 Biology and other natural sciences::92B Mathematical biology in general
dc.subject.amsClassificació AMS::65 Numerical analysis::65D Numerical approximation and computational geometry
dc.relation.publisherversionhttps://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/modelling-fluid-deformable-surfaces-with-an-emphasis-on-biological-interfaces/7D544C3F5CDD8F5F6C8291DB544057CA
dc.rights.accessOpen Access
local.identifier.drac25312336
dc.description.versionPostprint (author's final draft)
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/681434/EU/Epithelial cell sheets as engineering materials: mechanics, resilience and malleability/EpiMech
dc.relation.projectidinfo:eu-repo/grantAgreement/MINECO//DPI2015-71789-R/ES/INGENIERIA INVERSA DE LA ORGANIZACION MECANICA Y REOLOGIA DE LOS TEJIDOS EPITELIALES/
local.citation.authorTorres, A.; Millán, D.; Arroyo, M.
local.citation.publicationNameJournal of fluid mechanics
local.citation.volume872
local.citation.startingPage218
local.citation.endingPage271


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record