Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
61.690 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • DAMA-UPC - Data Management Group de la Universitat Politècnica de Catalunya
  • Ponències/Comunicacions de congressos
  • View Item
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • DAMA-UPC - Data Management Group de la Universitat Politècnica de Catalunya
  • Ponències/Comunicacions de congressos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Intensive crossovers: Improving quality in a genetic query optimizer

Thumbnail
View/Open
Intensive_crossovers.pdf (977,6Kb)
  View Usage Statistics
  LA Referencia / Recolecta stats
Cita com:
hdl:2117/165530

Show full item record
Muntés Mulero, Víctor
Aguilar Saborit, Josep
Zuzarte, Calisto
Larriba Pey, JosepMés informacióMés informacióMés informació
Document typeConference report
Defense date2006
PublisherInternational Centre for Numerical Methods in Engineering (CIMNE)
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
Database schemas and user queries are continuously growing with the need for storing and accessing large amounts of structured information. Among the several proposals to deal with Large Join Query Problem, genetic optimizers have shown to be a competitive approach. We propose a new search strategy to improve the quality of genetic query optimizers. We call our technique Intensive Crossovers (IC) and it shows that, in terms of quality of the results, it is worthier to spend more time creating extra child plans locally in a crossover operation than to focus on crossover operations on a lot of different execution plans. After the first analysis of IC, we propose an improved technique called Increasing Intensive Crossovers (IIC). The idea behind this improvement is to speed-up the convergence of IC. All in all, we show that the search strategy of choice is paramount to determine the qualily and convergence of a genetic query optimizer, opening a new line of research oriented to unlink genetic optimizers from their dependency on the random effects of both the initial population and the random decisions taken through the optimization process.
CitationMuntés, V. [et al.]. Intensive crossovers: Improving quality in a genetic query optimizer. A: Jornadas de Ingeniería del Software y Bases de Datos. "Ingeniería del software y bases de datos: Actas de las XI Jornadas de Ingeniería del Software y Bases de Datos: Sitges, 3 l 6 de octubre de 2006". Barcelona: International Centre for Numerical Methods in Engineering (CIMNE), 2006, p. 131-140. 
URIhttp://hdl.handle.net/2117/165530
ISBN84-95999-99-4
Collections
  • DAMA-UPC - Data Management Group de la Universitat Politècnica de Catalunya - Ponències/Comunicacions de congressos [21]
  • Departament d'Arquitectura de Computadors - Ponències/Comunicacions de congressos [1.874]
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
Intensive_crossovers.pdf977,6KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina