Show simple item record

dc.contributorPerera Lluna, Alexandre
dc.contributorRomero Ruiz, Iván
dc.contributor.authorRodríguez Segado, David
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
dc.description.abstractThe appliance of machine learning to TCP/IP traffic flows is not new. However, this projects aims to use it to predict the congestion avoidance algorithm at the first second of a data transference. Being able to recognize the congestion avoidance strategy that is being used, would improve flow control, allowing to act proactively instead of reactively. For this project, the flows are generated using NS-3 simulator. It provides an structure that can simulate the behaviour of the data transference through internet, allowing to extract information through pcap files. Wireshark has been used to extract the information that will be necessary to collect time series data and statistics of them. With this information available, there are proposed some machine learning methods to see if they can, using different sets of information representing the performance of the flows, distinguish between 8 different congestion avoidance algorithms: TCP BIC, TCP Highspeed, H-TCP, TCP Illinois, TCP Vegas, TCP Veno, TCP Westwood and TCP Yeah. None of the attempts allow a test error significantly lower than 50%, some algorithms are having performance too similar to be distinguished (specially H-TCP and TCP Veno). In addition, the best results were achieved when working with random forests (using all the statistics collected as input) and with RNN-LSTM (when the inputs are percent change values time series).
dc.publisherUniversitat Politècnica de Catalunya
dc.publisherUniversitat de Barcelona
dc.subjectÀrees temàtiques de la UPC::Informàtica::Sistemes d'informació
dc.subject.lcshCoding theory
dc.subject.lcshInformation theory
dc.subject.otherCongestion avoidance algorithm
dc.subject.otherMachine learning
dc.subject.otherNetwork traffic
dc.titleMachine Learning Applied to Network Traffic
dc.typeMaster thesis
dc.subject.lemacCodificació, Teoria de la
dc.subject.lemacInformació, Teoria de la
dc.subject.amsClassificació AMS::94 Information And Communication, Circuits::94A Communication, information
dc.rights.accessRestricted access - author's decision
dc.audience.mediatorUniversitat Politècnica de Catalunya. Facultat de Matemàtiques i Estadística

Files in this item


This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder