Show simple item record

dc.contributor.authorQuaranta, Giacomo
dc.contributor.authorLopez, Elena
dc.contributor.authorAbisset-Chavanne, Emmanuelle
dc.contributor.authorLouis Duval, Jean
dc.contributor.authorHuerta, Antonio
dc.contributor.authorChinesta, Francisco
dc.date.accessioned2019-06-29T11:22:58Z
dc.date.available2019-06-29T11:22:58Z
dc.date.issued2019
dc.identifier.citationQuaranta, G. [et al.]. Structural health monitoring by combining machine learning and dimensionality reduction techniques. "Revista internacional de métodos numéricos para cálculo y diseño en ingeniería", 2019, vol. 35, núm. 1.
dc.identifier.issn0213-1315
dc.identifier.issn1886-158X
dc.identifier.urihttp://hdl.handle.net/2117/165275
dc.description.abstractStructural Health Monitoring is of major interest in many areas of structural mechanics. This paper presents a new approach based on the combination of dimensionality reduction and data-mining techniques able to differentiate damaged and undamaged regions in a given structure. Indeed, existence, severity (size) and location of damage can be efficiently estimated from collected data at some locations from which the fields of interest are completed before the analysis based on machine learning and dimensionality reduction techniques proceed.
dc.language.isoeng
dc.publisherUniversitat Politècnica de Catalunya. CIMNE
dc.rightsAttribution-NonCommercial-ShareAlike 3.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/3.0/deed.es
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica
dc.subject.lcshNumerical analysis
dc.subject.otherNon Destructive Testing
dc.subject.otherMachine Learning
dc.subject.otherDimensionality Reduction
dc.titleStructural health monitoring by combining machine learning and dimensionality reduction techniques
dc.typeArticle
dc.subject.lemacAnàlisi numèrica
dc.identifier.doi10.23967/j.rimni.2018.12.001
dc.description.peerreviewedPeer Reviewed
dc.rights.accessOpen Access
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/675919/EU/Empowered decision-making in simulation-based engineering: Advanced Model Reduction for real-time, inverse and optimization in industrial problems/AdMoRe
local.citation.publicationNameRevista internacional de métodos numéricos para cálculo y diseño en ingeniería
local.citation.volume35
local.citation.number1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record