Show simple item record

dc.contributor.authorLiu, Quan
dc.contributor.authorToudert, Johann
dc.contributor.authorLi, Tengfei
dc.contributor.authorKramarenko, Mariia
dc.contributor.authorMartínez-Denegrí Sánchez, Guillermo
dc.contributor.authorCiammaruchi, Laura
dc.contributor.authorZhan, Xiaowei
dc.contributor.authorMartorell Pena, Jordi
dc.contributor.otherUniversitat Politècnica de Catalunya. Doctorat en Fotònica
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Física
dc.date.accessioned2019-06-28T16:01:18Z
dc.date.available2020-06-01T00:25:56Z
dc.date.issued2019-05-23
dc.identifier.citationLiu, Q. [et al.]. Inverse Optical Cavity Design for Ultrabroadband Light Absorption Beyond the Conventional Limit in Low-Bandgap Nonfullerene Acceptor–Based Solar Cells. "Advanced energy materials", 23 Maig 2019, vol. 9, núm. 20, p. 1-8.
dc.identifier.issn1614-6832
dc.identifier.urihttp://hdl.handle.net/2117/165271
dc.description.abstractIn the subwavelength regime, several nanophotonic configurations have been proposed to overcome the conventional light trapping or light absorption enhancement limit in solar cells also known as the Yablonovitch limit. It has been recently suggested that establishing such limit should rely on computational inverse electromagnetic design instead of the traditional approach combining intuition and a priori known physical effect. In the present work, by applying an inverse full wave vector electromagnetic computational approach, a 1D nanostructured optical cavity with a new resonance configuration is designed that provides an ultrabroadband (˜450 nm) light absorption enhancement when applied to a 107 nm thick active layer organic solar cell based on a low-bandgap (1.32 eV) nonfullerene acceptor. It is demonstrated computationally and experimentally that the absorption enhancement provided by such a cavity surpasses the conventional limit resulting from an ergodic optical geometry by a 7% average over a 450 nm band and by more than 20% in the NIR. In such a cavity configuration the solar cells exhibit a maximum power conversion efficiency above 14%, corresponding to the highest ever measured for devices based on the specific nonfullerene acceptor used.
dc.format.extent8 p.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Física
dc.subjectÀrees temàtiques de la UPC::Energies::Energia solar fotovoltaica
dc.subject.lcshSolar cells--Design and construction
dc.subject.lcshLight absorption
dc.subject.otherLight trapping
dc.subject.otherOptical cavity
dc.subject.otherTernary blend
dc.subject.otherLow-bandgap nonfullerene acceptor thin-film solar cell
dc.titleInverse Optical Cavity Design for Ultrabroadband Light Absorption Beyond the Conventional Limit in Low-Bandgap Nonfullerene Acceptor–Based Solar Cells
dc.typeArticle
dc.subject.lemacCèl·lules solars -- Disseny i construcció
dc.subject.lemacAbsorció de la llum
dc.identifier.doi10.1002/aenm.201900463
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://onlinelibrary.wiley.com/doi/abs/10.1002/aenm.201900463
dc.rights.accessOpen Access
local.identifier.drac24251681
dc.description.versionPostprint (author's final draft)
local.citation.authorLiu, Q.; Toudert, J.; Li, T.; Kramarenko, M.; Martínez-Denegri, G.; Ciammaruchi, L.; Zhan, X.; Martorell, J.
local.citation.publicationNameAdvanced energy materials
local.citation.volume9
local.citation.number20
local.citation.startingPage1
local.citation.endingPage8


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record