Formamidinium Incorporation into Compact Lead Iodide for Low Band Gap Perovskite Solar Cells with Open-Circuit Voltage Approaching the Radiative Limit
dc.contributor.author | Zhang, Hui |
dc.contributor.author | Kramarenko, Mariia |
dc.contributor.author | Martínez-Denegri Sánchez, Guillermo |
dc.contributor.author | Osmond, Johann |
dc.contributor.author | Martorell Pena, Jordi |
dc.contributor.other | Universitat Politècnica de Catalunya. Doctorat en Fotònica |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament de Física |
dc.date.accessioned | 2019-06-28T14:09:02Z |
dc.date.available | 2020-04-01T00:26:06Z |
dc.date.issued | 2019-03-06 |
dc.identifier.citation | Zhang, H. [et al.]. Formamidinium Incorporation into Compact Lead Iodide for Low Band Gap Perovskite Solar Cells with Open-Circuit Voltage Approaching the Radiative Limit. "ACS Applied materials and interfaces", 6 Març 2019, vol. 11, núm. 9, p. 9083-9092. |
dc.identifier.issn | 1944-8252 |
dc.identifier.uri | http://hdl.handle.net/2117/165259 |
dc.description.abstract | To bring hybrid lead halide perovskite solar cells toward the Shockley-Queisser limit requires lowering the band gap while simultaneously increasing the open-circuit voltage. This, to some extent divergent objective, may demand the use of largecations to obtain a perovskite with larger lattice parameter together with a large crystalsize to minimize interface nonradiative recombination. When applying the two-stepmethod for a better crystal control, it is rather challenging to fabricate perovskites withFA+cations, given the small penetration depth of such large ions into a compact PbI2film. In here, to successfully incorporate such large cations, we used a high-concentration solution of the organic precursor containing small Cl-anions achieving,via a solvent annealing-controlled dissolution-recrystallization, larger than 1µmperovskite crystals in a solar cell. This solar cell, with a largely increasedfluorescencequantum yield, exhibited an open-circuit voltage equivalent to 93% of thecorresponding radiative limit one. This, together with the low band gap achieved(1.53 eV), makes the fabricated perovskite cell one of the closest to the Shockley-Queisser optimum. |
dc.format.extent | 10 p. |
dc.language.iso | eng |
dc.subject | Àrees temàtiques de la UPC::Física |
dc.subject.lcsh | Perovskite solar cells |
dc.subject.lcsh | Fluorescense |
dc.subject.other | Solar cells |
dc.subject.other | Perovskite |
dc.subject.other | Open-circuit voltage |
dc.subject.other | Fluorescence quantum yield |
dc.subject.other | Radiative limit |
dc.title | Formamidinium Incorporation into Compact Lead Iodide for Low Band Gap Perovskite Solar Cells with Open-Circuit Voltage Approaching the Radiative Limit |
dc.type | Article |
dc.subject.lemac | Perovskita |
dc.subject.lemac | Cèl·lules solars |
dc.subject.lemac | Fluorescència |
dc.identifier.doi | 10.1021/acsami.8b20899 |
dc.description.peerreviewed | Peer Reviewed |
dc.relation.publisherversion | https://pubs.acs.org/doi/10.1021/acsami.8b20899 |
dc.rights.access | Open Access |
local.identifier.drac | 24006409 |
dc.description.version | Postprint (author's final draft) |
local.citation.author | Zhang, H.; Kramarenko, M.; Martínez-Denegri, G.; Osmond, J.; Martorell, J. |
local.citation.publicationName | ACS Applied materials and interfaces |
local.citation.volume | 11 |
local.citation.number | 9 |
local.citation.startingPage | 9083 |
local.citation.endingPage | 9092 |
Files in this item
This item appears in the following Collection(s)
-
Articles de revista [1.317]
-
Articles de revista [5]
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder