A kernel extension to handle missing data
View/Open
Cita com:
hdl:2117/16222
Document typeConference report
Defense date2009
PublisherSpringer-Verlag
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
An extension for univariate kernels that deals with missing values is proposed. These extended kernels are shown to be valid Mercer kernels and can adapt to many types of variables, such as categorical or continuous. The proposed kernels are tested against standard RBF kernels in a variety of benchmark problems showing different amounts of missing values and variable types. Our experimental results are very satisfactory, because they usually yield slight to much better improvements over those achieved with standard methods.
CitationNebot, G.; Belanche, Ll. A kernel extension to handle missing data. A: SGAI International Conference on Innovative Techniques and Applications of Artificial Intelligence. "Research and Development in Intelligent Systems XXVI: Incorporating Applications and Innovations in Intelligent Systems XVII". Cambridge: Springer-Verlag, 2009, p. 165-178.
ISBN978-1-84882-983-1
Publisher versionhttps://link.springer.com/chapter/10.1007/978-1-84882-983-1_12
Files | Description | Size | Format | View |
---|---|---|---|---|
author.pdf | Article principal | 120,1Kb | View/Open |