Show simple item record

dc.contributor.authorBarbero Liñán, María
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada IV
dc.identifier.citationBarbero, M. Characterization of accessibility for affine connection control systems at some points with nonzero velocity. A: IEEE Conference on Decision and Control. "Proceedings of the 50th IEEE Conference on Decision and Control". Orlando: 2011, p. 6528-6533.
dc.description.abstractAffine connection control systems are mechanical control systems that model a wide range of real systems such as robotic legs, hovercrafts, planar rigid bodies, rolling pennies, snakeboards and so on. In 1997 the accessibility and a particular notion of controllability was intrinsically described by A. D. Lewis and R. Murray at points of zero velocity. Here, we present a novel generalization of the description of accessibility algebra for those systems at some points with nonzero velocity as long as the affine connection restricts to the distribution given by the symmetric closure. The results are used to describe the accessibility algebra of different mechanical control systems
dc.format.extent6 p.
dc.subjectÀrees temàtiques de la UPC::Informàtica::Automàtica i control
dc.subject.lcshVelocity control
dc.subject.lcshPoles and zeros
dc.titleCharacterization of accessibility for affine connection control systems at some points with nonzero velocity
dc.typeConference lecture
dc.subject.lemacSistemes de control
dc.contributor.groupUniversitat Politècnica de Catalunya. DGDSA - Geometria Diferencial, Sistemes Dinàmics i Aplicacions
dc.rights.accessRestricted access - publisher's policy
dc.description.versionPostprint (published version)
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/FP7/246981/EU/Geometric Mechanics/GEOMECH
upcommons.citation.authorBarbero, M.
upcommons.citation.contributorIEEE Conference on Decision and Control
upcommons.citation.publicationNameProceedings of the 50th IEEE Conference on Decision and Control

Files in this item


This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder