Approximate partitioning of observations in hierarchical particle filter body tracking
View/Open
Approximate partitioning of observations in hierarchical particle filter body tracking.pdf (291,5Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/16171
Document typeConference report
Defense date2011
Rights accessRestricted access - publisher's policy
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
This paper presents a model-based hierarchical particle filtering algorithm to estimate the pose and anthropometric parameters of humans in multi-view environments. Our method incorporates a novel likelihood measurement approach consisting of an approximate partitioning of observations. Provided that a partitioning of the human body model has been defined and associates body parts to state space variables, the proposed method estimates image regions that are relevant to that body part and thus to the state space variables of interest. The proposed regions are bounding boxes and consequently can be efficiently processed in a GPU. The algorithm is tested in a challenging dataset involving people playing tennis (TennisSense) and also in the well-known HumanEva dataset. The obtained results show the effectiveness of the proposed method.
CitationLópez-Mendez, A. [et al.]. Approximate partitioning of observations in hierarchical particle filter body tracking. A: IEEE Conference on Computer Vision and Pattern Recognition. "2011 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops". 2011, p. 19-24.
ISBN978-1-4577-0529-8
Publisher versionhttp://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5981712
Files | Description | Size | Format | View |
---|---|---|---|---|
Approximate par ... e filter body tracking.pdf![]() | 291,5Kb | Restricted access |