Show simple item record

dc.contributor.authorRamírez de la Piscina Millán, Laureano
dc.contributor.authorSancho, Jose Maria
dc.contributor.authorHernández Machado, Aurora
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Física Aplicada
dc.identifier.citationRamírez de la Piscina,L.; Sancho, J.M.; Hernández Machado, A. (1993). Fluctuations in domain growth: Ginzburg-Landau equations with multiplicative noise. Physical Review B, 48 (1): 119-124
dc.description.abstractGinzburg-Landau equations with multiplicative noise are considered, to study the effects of fluctuations in domain growth. The equations are derived from a coarse-grained methodology and expressions for the resulting concentration-dependent diffusion coefficients are proposed. The multiplicative noise gives contributions to the Cahn-Hilliard linear-stability analysis. In particular, it introduces a delay in the domain-growth dynamics
dc.publisherThe American Physical Society
dc.subjectÀrees temàtiques de la UPC::Física
dc.subject.lcshFluctuations (Physics)
dc.subject.lcshPhase transformations (Statistical physics)
dc.subject.otherDomain growth
dc.subject.otherSpinodal decomposition
dc.subject.otherGinzburg-Landau equation
dc.subject.otherMultiplicative noise
dc.subject.otherLangevin equation
dc.titleFluctuations in domain growth: Ginzburg-Landau equations with multiplicative noise
dc.subject.lemacFluctuacions (Física)
dc.subject.lemacTransformacions de fase (Física estadística)
dc.contributor.groupUniversitat Politècnica de Catalunya. NOLIN - Física No-Lineal i Sistemes Fora de l'Equilibri
dc.description.peerreviewedPeer Reviewed
dc.rights.accessOpen Access

Files in this item


This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder