Mostra el registre d'ítem simple

dc.contributor.authorVilarrasa Riaño, Víctor
dc.contributor.authorOlivella Pastallé, Sebastià
dc.contributor.authorCarrera Ramírez, Jesús
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria del Terreny, Cartogràfica i Geofísica
dc.date.accessioned2012-05-14T15:00:47Z
dc.date.available2012-05-14T15:00:47Z
dc.date.created2011
dc.date.issued2011
dc.identifier.citationVilarrasa, V.; Olivella, S.; Carrera, J. Geomechanical stability of the caprock during CO2 sequestration in deep saline aquifers. "Energy procedia", 2011, núm. 4, p. 5306-5313.
dc.identifier.issn1876-6102
dc.identifier.urihttp://hdl.handle.net/2117/15846
dc.description.abstractSequestration of carbon dioxide (CO2) in deep saline aquifers has emerged as a mitigation strategy for reducing greenhouse gas emissions to the atmosphere. The large amounts of supercritical CO2 that need to be injected into deep saline aquifers may cause large fluid pressure buildup. The resulting overpressure will produce changes in the effective stress field. This will deform the rock and may promote reactivation of sealed fractures or the creation of new ones in the caprock seal, which could lead to escape paths for CO2. To understand these coupled hydromechanical phenomena, we model an axisymmetric horizontal aquifer-caprock system. We study plastic strain propagation patterns using a viscoplastic approach. Simulations illustrate that plastic strain may propagate through the whole thickness of the caprock if horizontal stress is lower than vertical stress. In contrast, plastic strain concentrates in the contact between the aquifer and the caprock if horizontal stress is larger than vertical stress. Aquifers that present a low-permeability boundary experience an additional fluid pressure increase once the pressure buildup cone reaches the outer boundary. However, fluid pressure does not evolve uniformly in the aquifer. While it increases in the low-permeability boundary, it drops in the vicinity of the injection well because of the lower viscosity of CO2. Thus, caprock stability does not get worse in semi-closed aquifers compared to open aquifers. Overall, the caprock acts as a plate that bends because of pressure buildup, producing a horizontal extension of the upper part of the caprock. This implies a vertical compression of this zone, which may produce settlements instead of uplift in low-permeability (k≤10-18 m2) caprocks at early times of injection.
dc.format.extent8 p.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Enginyeria civil::Geologia::Hidrologia subterrània
dc.subject.lcshGeological carbon sequestration
dc.subject.otherPressure buildup
dc.subject.otherHydromechanical coupling
dc.subject.otherDilatancy
dc.subject.otherFracture
dc.subject.otherStress state
dc.titleGeomechanical stability of the caprock during CO2 sequestration in deep saline aquifers
dc.typeArticle
dc.subject.lemacAnhídrid carbònic -- Emmagatzematge
dc.contributor.groupUniversitat Politècnica de Catalunya. GHS - Grup d'Hidrologia Subterrània
dc.contributor.groupUniversitat Politècnica de Catalunya. MSR - Mecànica del Sòls i de les Roques
dc.identifier.doi10.1016/j.egypro.2011.02.511
dc.description.peerreviewedPeer Reviewed
dc.rights.accessOpen Access
local.identifier.drac5811560
dc.description.versionPreprint
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/FP7/227286/EU/A multiple space and time scale approach for the quantification of deep saline formations for CO2 storage/MUSTANG
local.citation.authorVilarrasa, V.; Olivella, S.; Carrera, J.
local.citation.publicationNameEnergy procedia
local.citation.number4
local.citation.startingPage5306
local.citation.endingPage5313


Fitxers d'aquest items

Thumbnail

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple