Deriving traffic demand patterns from historical data
View/Open
9574373.pdf (852,4Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Document typeConference lecture
Defense date2012
Rights accessRestricted access - publisher's policy
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
The development and decreased cost of technology and communications have brought about a huge increase in the availability of traffic data. With every passing day, traffic management centers must deal with an increased amount of detailed data. Once the real time use of these data is complete, they must be stored for long periods of time. In this long term context, the vast amount of raw data is meaningless, which is a clear example of data asphyxiation. Traffic management centers must aggregate and synthesize the data in order to extract the maximum knowledge from them. Pattern classification is a way to deal with this issue. Traditionally, traffic demand patterns have been easily constructed using ad hoc methods, where “experience” is their main attribute. These procedures lack the required rigor to support current needs in terms of planning and operational management. The present paper proposes a method to systematically derive traffic demand patterns from historical data. The method is based on the cluster analysis technique, and allows the inclusion of preexistent knowledge, which eases the interpretation and practical use of the results. The proposed pattern classification procedure is applied to five years of hourly traffic volumes on a Spanish highway. The obtained results prove the validity and utility of the method to accurately summarize the seasonal and daily characteristics of traffic demand.
CitationSoriguera, F.; Rosas, D. Deriving traffic demand patterns from historical data. A: Transportation Research Board Annual Meeting. "Proceedings of the 91st Transportation Research Board Annual Meeting". Washington D.C.: 2012, p. 1-18.
Publisher versionhttp://amonline.trb.org/
Files | Description | Size | Format | View |
---|---|---|---|---|
9574373.pdf![]() | 852,4Kb | Restricted access |