Show simple item record

dc.contributor.authorRebollo Neira, Laura
dc.contributor.authorFernández Rubio, Juan Antonio
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions
dc.identifier.citationRebollo Neira, L.; Fernandez Rubio, J. A.The continuous wavelet transform as a maximum entropy solution of the corresponding inverse problem. IEEE Transactions on Signal Processing, 1999, vol. 47, núm. 7, p. 2046-2050.
dc.description.abstractThe continuous wavelet transform is obtained as a maximum entropy solution of the corresponding inverse problem. It is well known that although a signal can be reconstructed from its wavelet transform, the expansion is not unique due to the redundancy of continuous wavelets. Hence, the inverse problem has no unique solution. If we want to recognize one solution as "optimal", then an appropriate decision criterion has to be adopted. We show here that the continuous wavelet transform is an "optimal" solution in a maximum entropy sense.
dc.subjectÀrees temàtiques de la UPC::Enginyeria de la telecomunicació::Processament del senyal
dc.subject.lcshWavelets (Mathematics)
dc.subject.lcshSignal processing
dc.subject.otherContinuous wavelet transform
dc.subject.otherDecision criterion
dc.subject.otherInverse problem
dc.subject.otherMaximum entropy solution
dc.subject.otherOptimal solution
dc.subject.otherStatistical description
dc.subject.otherSignal reconstruction
dc.subject.otherStatistical analysis
dc.subject.otherWavelet transforms
dc.titleThe continuous wavelet transform as a maximum entropy solution of the corresponding inverse problem
dc.subject.lemacProcessament del senyal
dc.contributor.groupUniversitat Politècnica de Catalunya. SPCOM - Grup de Recerca de Processament del Senyal i Comunicacions
dc.description.peerreviewedPeer Reviewed
dc.rights.accessOpen Access

Files in this item


This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder