Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.620 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Instituts de recerca
  • IRI - Institut de Robòtica i Informàtica Industrial, CSIC-UPC
  • Ponències/Comunicacions de congressos
  • View Item
  •   DSpace Home
  • E-prints
  • Instituts de recerca
  • IRI - Institut de Robòtica i Informàtica Industrial, CSIC-UPC
  • Ponències/Comunicacions de congressos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

EG-RRT: Environment-guided random trees for kinodynamic motion planning with uncertainty and obstacles

Thumbnail
View/Open
1251-EG-RRT_-Environment-Guided-Random-Trees-for-Kinodynamic---mbox{Motion-Planning}-with-Uncertainty-and-Obstacles.pdf (752,0Kb)
Share:
 
 
10.1109/IROS.2011.6048409
 
  View Usage Statistics
Cita com:
hdl:2117/15234

Show full item record
Jaillet, Leonard Georges
Hoffman, Judy
Van den Berg, Jur
Abbeel, Pieter
Porta Pleite, Josep MariaMés informacióMés informació
Goldberg, Ken
Document typeConference report
Defense date2011
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
Existing sampling-based robot motion planning methods are often inefficient at finding trajectories for kinodynamic systems, especially in the presence of narrow passages between obstacles and uncertainty in control and sensing. To address this, we propose EG-RRT, an Environment-Guided variant of RRT designed for kinodynamic robot systems that combines elements from several prior approaches and may incorporate a cost model based on the LQG-MP framework to estimate the probability of collision under uncertainty in control and sensing. We compare the performance of EG-RRT with several prior approaches on challenging sample problems. Results suggest that EG-RRT offers significant improvements in performance.
CitationJaillet, L. [et al.]. EG-RRT: Environment-guided random trees for kinodynamic motion planning with uncertainty and obstacles. A: IEEE/RSJ International Conference on Intelligent Robots and Systems. "Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems". San Francisco: 2011, p. 2646-2652. 
URIhttp://hdl.handle.net/2117/15234
DOI10.1109/IROS.2011.6048409
Publisher versionhttp://dx.doi.org/10.1109/IROS.2011.6048409
Collections
  • IRI - Institut de Robòtica i Informàtica Industrial, CSIC-UPC - Ponències/Comunicacions de congressos [463]
  • ROBiri - Grup de Robòtica de l'IRI - Ponències/Comunicacions de congressos [219]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
1251-EG-RRT_-En ... ertainty-and-Obstacles.pdf752,0KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina