EG-RRT: Environment-guided random trees for kinodynamic motion planning with uncertainty and obstacles

Cita com:
hdl:2117/15234
Document typeConference report
Defense date2011
Rights accessOpen Access
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
Existing sampling-based robot motion planning methods are often inefficient at finding trajectories for kinodynamic systems, especially in the presence of narrow passages between obstacles and uncertainty in control and sensing. To address this, we propose EG-RRT, an Environment-Guided variant of RRT designed for kinodynamic robot systems that combines elements from several prior approaches and may incorporate a cost model based on the LQG-MP framework to estimate the probability of collision under uncertainty in control and sensing. We compare the performance of EG-RRT with several prior approaches on challenging sample problems. Results suggest that EG-RRT offers significant improvements in performance.
CitationJaillet, L. [et al.]. EG-RRT: Environment-guided random trees for kinodynamic motion planning with uncertainty and obstacles. A: IEEE/RSJ International Conference on Intelligent Robots and Systems. "Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems". San Francisco: 2011, p. 2646-2652.
Publisher versionhttp://dx.doi.org/10.1109/IROS.2011.6048409
Files | Description | Size | Format | View |
---|---|---|---|---|
1251-EG-RRT_-En ... ertainty-and-Obstacles.pdf | 752,0Kb | View/Open |