Compatible matchings in geometric graphs

View/Open
Document typeConference report
Defense date2011
PublisherCentre de Recerca Matemàtica
Rights accessOpen Access
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
Two non-crossing geometric graphs on the same set of points are compatible if their union
is also non-crossing. In this paper, we prove that every graph G that has an outerplanar embedding
admits a non-crossing perfect matching compatible with G. Moreover, for non-crossing geometric trees
and simple polygons, we study bounds on the minimum number of edges that a compatible non-crossing
perfect matching must share with the tree or the polygon. We also give bounds on the maximal size of
a compatible matching (not necessarily perfect) that is disjoint from the tree or the polygon.
CitationAichholzer, O. [et al.]. Compatible matchings in geometric graphs. A: Encuentros de Geometría Computacional. "Actas de los XIV Encuentros de Geometría Computacional". Alcalá de Henares: Centre de Recerca Matemàtica, 2011, p. 145-148.
ISBN2014-2323
Publisher versionhttp://www.crm.es/Publications/Documents/Documents_8.pdf
Files | Description | Size | Format | View |
---|---|---|---|---|
aght-cmgg-11.pdf | Abstract XIV EGC | 98,13Kb | View/Open |