Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
61.690 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions
  • Reports de recerca
  • View Item
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions
  • Reports de recerca
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Upper bounds for the number of zeroes for some Abelian Integrals

Thumbnail
View/Open
article principal (174,7Kb)
  View Usage Statistics
  LA Referencia / Recolecta stats
Cita com:
hdl:2117/14763

Show full item record
Lázaro Ochoa, José TomásMés informacióMés informacióMés informació
Gasull Embid, Armengol
Torregrosa, Joan
Document typeResearch report
Defense date2012-01-12
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
Abstract. Consider the vector field x0 = -yG(x, y), y0 = xG(x, y), where the set of critical points {G(x, y) = 0} is formed by K straight lines, not passing through the origin and parallel to one or two orthogonal directions. We perturb it with a general polynomial perturbation of degree n and study which is the maximum number of limit cycles that can bifurcate from the period annulus of the origin in terms of K and n. Our approach is based on the explicit computation of the Abelian integral that controls the bifurcation and in a new result for bounding the number of zeroes of a certain family of real functions. When we apply our results for K 4 we recover or improve some results obtained in several previous works.
CitationLázaro, J.; Gasull, A.; Torregrosa, J. "Upper bounds for the number of zeroes for some Abelian Integrals". 2012. 
URIhttp://hdl.handle.net/2117/14763
Collections
  • EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions - Reports de recerca [103]
  • Departament de Matemàtiques - Reports de recerca [400]
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
GasLazTor2010.pdfarticle principal174,7KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina