UPCommons està en procés de migració del dia 10 fins al 14 Juliol. L’autentificació està deshabilitada per evitar canvis durant aquesta migració.
A recursive approach to multiscalar data interpolation of sparsely sampled sea surface measurements at different spatial resolutions
View/Open
04530949.pdf (2,249Mb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/14249
Document typeConference report
Defense date2008
Rights accessRestricted access - publisher's policy
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
In many oceanographic studies there is a need to
reconstruct a signal from a set of sparse measurements. We
propose an algorithm to iteratively approximate the
intermediate values between irregularly sampled data, when a
set of sparse values at coarser scales is known. This is possible
when there is an approximation to a model for the
multiresolution decomposition/reconstruction scheme of the
dataset. Although the problem is ill-posed, this approach gives
an easy scheme to interpolate the values of a signal using all
the information available at different resolutions. This
reconstruction method could be used as an extension of any
interpolation method to optimize the multiresolution sparse
data fusion. A simplified one-dimensional case illustrates the
explanation; it is an algorithm based on a recursive scheme of
a fast dyadic wavelet transform and its inversion, using a filter
bank analysis/synthesis implementation for the wavelet
transforms model. This can be a basis method suitable for
applied cases where there are sparse measures from different
instruments that are sensing the same scene simultaneously
with several resolutions. Extensions of the method to sparse
multiresolution dataset with higher dimensions (images or
vector fields) also offer some promising preliminary results.
CitationReig, R. [et al.]. A recursive approach to multiscalar data interpolation of sparsely sampled sea surface measurements at different spatial resolutions. A: OCEANS MTS/IEEE. "OCEANS'08 MTS/IEEE KOBE-TECHNO-OCEAN'08 Conference and Exhibition : Voyage toward the future". Kobe: 2008.
ISBN978-1-4244-2126-8
Publisher versionhttp://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4530949
Collections
Files | Description | Size | Format | View |
---|---|---|---|---|
04530949.pdf![]() | 2,249Mb | Restricted access |