Show simple item record

dc.contributor.authorIla, Viorela Simona
dc.contributor.authorPorta Pleite, Josep Maria
dc.contributor.authorAndrade-Cetto, Juan
dc.contributor.otherInstitut de Robòtica i Informàtica Industrial
dc.identifier.citationIla, V.S.; Porta Pleite, J.M.; Andrade-Cetto, J. Amortized constant time estimation in Pose SLAM and hierarchical SLAM using a mixed Kalman-information filter. "Robotics and autonomous systems", 2011, vol. 59, núm. 5, p. 310-318.
dc.description.abstractThe computational bottleneck in all information-based algorithms for simultaneous localization and mapping (SLAM) is the recovery of the state mean and covariance. The mean is needed to evaluate model Jacobians and the covariance is needed to generate data association hypotheses. In general, recovering the state mean and covariance requires the inversion of a matrix with the size of the state, which is computationally too expensive in time and memory for large problems. Exactly sparse state representations, such as that of Pose SLAM, alleviate the cost of state recovery either in time or in memory, but not in both. In this paper, we present an approach to state estimation that is linear both in execution time and in memory footprint at loop closure, and constant otherwise. The method relies on a state representation that combines the Kalman and the information-based approaches. The strategy is valid for any SLAM system that maintains constraints between marginal states at different time slices. This includes both Pose SLAM, the variant of SLAM where only the robot trajectory is estimated, and hierarchical techniques in which submaps are registered with a network of relative geometric constraints.
dc.format.extent9 p.
dc.subjectÀrees temàtiques de la UPC::Informàtica::Robòtica
dc.subject.lcshSimultaneous localization and mapping
dc.subject.lcshPose SLAM
dc.subject.lcshHierarchical SLAM
dc.subject.otherKalman filter
dc.subject.otherInformation filter
dc.subject.otherPose SLAM
dc.titleAmortized constant time estimation in Pose SLAM and hierarchical SLAM using a mixed Kalman-information filter
dc.subject.lemacSLAM (robòtica)
dc.contributor.groupUniversitat Politècnica de Catalunya. ROBiri - Grup de Robòtica de l'IRI
dc.contributor.groupUniversitat Politècnica de Catalunya. VIS - Visió Artificial i Sistemes Intel·ligents
dc.description.peerreviewedPeer Reviewed
dc.rights.accessOpen Access
local.citation.publicationNameRobotics and autonomous systems

Files in this item


This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder