Show simple item record

dc.contributor.authorBlasco Lorente, Jorge
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I
dc.description.abstractWe consider a pressure stabilized, finite element approximation of incompressible flow problems in primitive velocity--pressure variables, which is based on a projection of the gradient of the discrete pressure onto the space of discrete functions. Equal order interpolation for the velocity and the pressure can be employed with this formulation. The method introduced here is specially developed to be used on anisotropic finite element meshes with large element aspect ratios.
dc.rightsAttribution-NonCommercial-NoDerivs 2.5 Spain
dc.subject.classificationFlux de fluids
dc.subject.otherMecànica de fluids-elements finits
dc.titleA pressure-stabilized formulation of incompressible flow problems on anisotropic finite-element meshes
dc.typeExternal research report
dc.rights.accessOpen Access

Files in this item


This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 2.5 Spain