dc.contributor.author | Ginovart Gisbert, Marta |
dc.contributor.author | Prats Soler, Clara |
dc.contributor.author | Portell Canal, Xavier |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament de Física i Enginyeria Nuclear |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada III |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament d'Enginyeria Agroalimentària i Biotecnologia |
dc.date.accessioned | 2011-10-17T14:41:30Z |
dc.date.available | 2011-10-17T14:41:30Z |
dc.date.created | 2011 |
dc.date.issued | 2011 |
dc.identifier.citation | Ginovart, M.; Prats, C.; Portell, X. Microbial individual-based models and sensitivity analyses: local and global methods. A: International Conference on Predicitive Modeling in Foods. "7th International Conference on Predictive Modelling of Food Quality and Safety". Dublín: 2011, p. 313-316. |
dc.identifier.isbn | 1 900454 46 7 |
dc.identifier.uri | http://hdl.handle.net/2117/13546 |
dc.description.abstract | A microbial Individual-based Model (IbM) to deal with yeast populations growing in liquid
batch cultures has been designed and implemented in a simulator called INDISIM-YEAST. Interesting qualitative results have already been achieved with its use in the study of fermentation profiles, small inocula dynamics and lag phase, among others. Nevertheless, in order to improve its predictive capabilities and further development, a deeper comprehension
of how the variation of the output of the model can be apportioned to different sources of variation must be investigated. One way to consider a sensitivity analysis for this IbM, providing an understanding of how the model response variables react to changes in the inputs, is the statistical study of well-designed computer experiments. The aim of this contribution is to show how the insights into nine individual cell parameters of INDISIMYEAST, mainly related to uptake and reproduction sub-models, can be obtained by combining local and global sensitivity analyses using simple and classic methods. From data obtained with an extensive set of computer experiments, a study of the variability observed in
the evolution of two outputs of this model, ethanol production and mean biomass of the
population, was performed. In addition, mono-factorial (one-at-a-time) analyses and
ANOVA-based global analyses were also carried out on these two outputs. The model is clearly less sensitive to some parameters than others, depending on the output controlled. Moreover, this study allows identification of the parameters which have the greatest impact on the corresponding outputs and their significant first-order interactions. This work must be understood as an exercise to set up the procedure to be used in a sensitivity analysis study
involving microbial IbMs. The knowledge gained will facilitate future parameterization and calibration of different parameters and outputs depending on the purpose of any study. |
dc.format.extent | 4 p. |
dc.language.iso | eng |
dc.subject | Àrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi matemàtica |
dc.subject.lcsh | mathematical analysis |
dc.subject.other | Sensitivity analysis
Computer experiments
Individual-based model
Yeast population |
dc.title | Microbial individual-based models and sensitivity analyses: local and global methods |
dc.type | Conference lecture |
dc.subject.lemac | Anàlisi de dades |
dc.contributor.group | Universitat Politècnica de Catalunya. SC-SIMBIO - Sistemes complexos. Simulació discreta de materials i de sistemes biològics |
dc.subject.ams | Classificació AMS::58 Global analysis, analysis on manifolds |
dc.rights.access | Restricted access - publisher's policy |
local.identifier.drac | 6002250 |
dc.description.version | Postprint (published version) |
local.citation.author | Ginovart, M.; Prats, C.; Portell, X. |
local.citation.contributor | International Conference on Predicitive Modeling in Foods |
local.citation.pubplace | Dublín |
local.citation.publicationName | 7th International Conference on Predictive Modelling of Food Quality and Safety |
local.citation.startingPage | 313 |
local.citation.endingPage | 316 |