A note on decisive symmetric games
View/Open
Article principal (657,1Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/13512
Document typeArticle
Defense date2011
Rights accessRestricted access - publisher's policy
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
Binary voting systems, usually represented by simple games, constitute a main DSS topic. A crucial feature of
such a system is the easiness with which a proposal can be collectively accepted, which is measured by the
“decisiveness index” of the corresponding game. We study here several functions related to the decisiveness
of any simple game. The analysis, including the asymptotic behavior as the number n of players increases, is
restricted to decisive symmetric games and their compositions, and it is assumed that all players have a
common probability p to vote for the proposal. We show that, for n large enough, a small variation, either
positive or negative, in p when p=1/2 takes the decisiveness to quickly approach, respectively, 1 or 0.
Moreover, we analyze the speed of the decisiveness convergence.
CitationCarreras, F.; Freixas, J.; Puente, M.A. A note on decisive symmetric games. "Decision support systems", 2011, vol. 51, núm. 3, p. 424-433.
ISSN0167-9236
Publisher versionhttp://www.sciencedirect.com/science/article/pii/S0167923611000339
Files | Description | Size | Format | View |
---|---|---|---|---|
Anoteondecision.pdf![]() | Article principal | 657,1Kb | Restricted access |