Show simple item record

dc.contributor.authorAhmad, Ali
dc.contributor.authorLópez Masip, Susana Clara
dc.contributor.authorMuntaner Batle, Francesc Antoni
dc.contributor.authorRius Font, Miquel
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada IV
dc.date.accessioned2011-10-06T15:37:35Z
dc.date.available2011-10-06T15:37:35Z
dc.date.issued2011-06-15
dc.identifier.issn0004-9727
dc.identifier.urihttp://hdl.handle.net/2117/13452
dc.description.abstractA super edge-magic labeling of a graph G=(V,E) of order p and size q is a bijection f:V ∪E→{i}p+qi=1 such that: (1) f(u)+f(uv)+f(v)=k for all uv∈E; and (2) f(V )={i}pi=1. Furthermore, when G is a linear forest, the super edge-magic labeling of G is called strong if it has the extra property that if uv∈E(G) , u′,v′ ∈V (G) and dG (u,u′ )=dG (v,v′ )<+∞, then f(u)+f(v)=f(u′ )+f(v′ ). In this paper we introduce the concept of strong super edge-magic labeling of a graph G with respect to a linear forest F, and we study the super edge-magicness of an odd union of nonnecessarily isomorphic acyclic graphs. Furthermore, we find exponential lower bounds for the number of super edge-magic labelings of these unions. The case when G is not acyclic will be also considered.
dc.format.extent12 p.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica discreta::Teoria de grafs
dc.subject.lcshGraph theory
dc.subject.otherSuper edge-magic labeling Strong super edge-magic labeling
dc.titleEnumerating super edge-magic labelings for the union of non-isomorphic graphs
dc.typeArticle
dc.subject.lemacGrafs, Teoria de
dc.contributor.groupUniversitat Politècnica de Catalunya. COMBGRAPH - Combinatòria, Teoria de Grafs i Aplicacions
dc.identifier.doi10.1017/S0004972711002292
dc.subject.amsClassificació AMS::05 Combinatorics::05C Graph theory
dc.rights.accessOpen Access
drac.iddocument5492284
dc.description.versionPreprint


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder