dc.contributor.author Ahmad, Ali dc.contributor.author López Masip, Susana Clara dc.contributor.author Muntaner Batle, Francesc Antoni dc.contributor.author Rius Font, Miquel dc.contributor.other Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada IV dc.date.accessioned 2011-10-06T15:37:35Z dc.date.available 2011-10-06T15:37:35Z dc.date.issued 2011-06-15 dc.identifier.issn 0004-9727 dc.identifier.uri http://hdl.handle.net/2117/13452 dc.description.abstract A super edge-magic labeling of a graph G=(V,E) of order p and size q is a bijection f:V ∪E→{i}p+qi=1 such that: (1) f(u)+f(uv)+f(v)=k for all uv∈E; and (2) f(V )={i}pi=1. Furthermore, when G is a linear forest, the super edge-magic labeling of G is called strong if it has the extra property that if uv∈E(G) , u′,v′ ∈V (G) and dG (u,u′ )=dG (v,v′ )<+∞, then f(u)+f(v)=f(u′ )+f(v′ ). In this paper we introduce the concept of strong super edge-magic labeling of a graph G with respect to a linear forest F, and we study the super edge-magicness of an odd union of nonnecessarily isomorphic acyclic graphs. Furthermore, we find exponential lower bounds for the number of super edge-magic labelings of these unions. The case when G is not acyclic will be also considered. dc.format.extent 12 p. dc.language.iso eng dc.subject Àrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica discreta::Teoria de grafs dc.subject.lcsh Graph theory dc.subject.other Super edge-magic labeling Strong super edge-magic labeling dc.title Enumerating super edge-magic labelings for the union of non-isomorphic graphs dc.type Article dc.subject.lemac Grafs, Teoria de dc.contributor.group Universitat Politècnica de Catalunya. COMBGRAPH - Combinatòria, Teoria de Grafs i Aplicacions dc.identifier.doi 10.1017/S0004972711002292 dc.subject.ams Classificació AMS::05 Combinatorics::05C Graph theory dc.rights.access Open Access drac.iddocument 5492284 dc.description.version Preprint
﻿

### This item appears in the following Collection(s)

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder