Human motion capture using scalable body models
View/Open
Human motion capture using scalable body models - cantonferrer.pdf (1,451Mb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/13393
Document typeArticle
Defense date2011-10
Rights accessRestricted access - publisher's policy
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
This paper presents a general analysis framework towards exploiting the underlying hierarchical and scalable structure of an articulated object for pose estimation and tracking. Scalable human body models are introduced as an ordered set of articulated models fulfilling an inclusive hierarchy. The concept of annealing is applied to derive a generic particle filtering scheme able to perform a sequential filtering over the set of models contained in the scalable human body model. Two annealing loops are employed, the standard likelihood annealing and the newly introduced structural annealing, leading to a robust, progressive and efficient analysis of the input data. The validity of this scheme is tested by performing markerless human motion capture in a multi-camera environment employing the standard HumanEva annotated datasets. Finally, quantitative results are presented and compared with other existing HMC techniques.
CitationCanton-Ferrer, C.; Casas, J.; Pardas, M. Human motion capture using scalable body models. "Computer vision and image understanding", Octubre 2011, vol. 115, núm. 10, p. 1363-1374.
ISSN1077-3142
Files | Description | Size | Format | View |
---|---|---|---|---|
Human motion ca ... models - cantonferrer.pdf![]() | 1,451Mb | Restricted access |