Show simple item record

dc.contributor.authorNin Guerrero, Jordi
dc.contributor.authorPont Tuset, Jordi
dc.contributor.authorMedrano Gracia, Pau
dc.contributor.authorLarriba Pey, Josep
dc.contributor.authorMuntés Mulero, Víctor
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions
dc.date.accessioned2011-09-28T10:47:13Z
dc.date.available2011-09-28T10:47:13Z
dc.date.created2007
dc.date.issued2007
dc.identifier.citationNin, J. [et al.]. Increasing polynomial regression complexity for data anonymization. A: International Conference on Intelligent Pervasive Computing. "2007 International Conference on Intelligent Pervasive Computing". Jeju Island: IEEE Computer Society, 2007, p. 29-34.
dc.identifier.isbn0-7695-3006-0
dc.identifier.urihttp://hdl.handle.net/2117/13376
dc.description.abstractPervasive computing and the increasing networking needs usually demand from publishing data without revealing sensible information. Among several data protection methods proposed in the literature, those based on linear regression are widely used for numerical data. However, no attempts have been made to study the effect of using more complex polynomial regression methods. In this paper, we present PoROP-k, a family of anonymizing methods able to protect a data set using polynomial regressions. We show that PoROP-k not only reduces the loss of information, but it also obtains a better level of protection compared to previous proposals based on linear regressions.
dc.format.extent6 p.
dc.language.isoeng
dc.publisherIEEE Computer Society
dc.subjectÀrees temàtiques de la UPC::Informàtica::Seguretat informàtica
dc.subject.lcshData protection
dc.subject.otherRegression analysis
dc.subject.otherSecurity of data
dc.subject.otherUbiquitous computing
dc.titleIncreasing polynomial regression complexity for data anonymization
dc.typeConference report
dc.subject.lemacProtecció de dades
dc.contributor.groupUniversitat Politècnica de Catalunya. DAMA-UPC - Data Management Group
dc.identifier.doi10.1109/IPC.2007.103
dc.description.peerreviewedPeer Reviewed
dc.rights.accessOpen Access
drac.iddocument2440725
dc.description.versionPostprint (published version)
upcommons.citation.authorNin, J.; Pont, J.; Medrano, P.; Larriba, J.; Muntés, V.
upcommons.citation.contributorInternational Conference on Intelligent Pervasive Computing
upcommons.citation.pubplaceJeju Island
upcommons.citation.publishedtrue
upcommons.citation.publicationName2007 International Conference on Intelligent Pervasive Computing
upcommons.citation.startingPage29
upcommons.citation.endingPage34


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder