Show simple item record

dc.contributor.authorBaldomá Barraca, Inmaculada
dc.contributor.authorCastejón Company, Oriol
dc.contributor.authorMartínez-Seara Alonso, M. Teresa
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtiques
dc.date.accessioned2019-05-31T08:17:04Z
dc.date.available2019-08-01T00:25:38Z
dc.date.issued2018-04-17
dc.identifier.citationBaldoma, I.; Castejón, O.; Martinez-seara, T. Breakdown of a 2D heteroclinic connection in the Hopf-zero singularity (II): The generic case. "Journal of nonlinear science", 17 Abril 2018, vol. 28, núm. 4, p. 1489-1549.
dc.identifier.issn0938-8974
dc.identifier.otherhttps://mat-web.upc.edu/people/tere.m-seara/articles/BaldomaCSJNLS2018_II.pdf
dc.identifier.urihttp://hdl.handle.net/2117/133744
dc.description.abstractIn this paper, we prove the breakdown of the two-dimensional stable and unstable manifolds associated to two saddle-focus points which appear in the unfoldings of the Hopf-zero singularity. The method consists in obtaining an asymptotic formula for the difference between these manifolds which turns to be exponentially small respect to the unfolding parameter. The formula obtained is explicit but depends on the so-called Stokes constants, which arise in the study of the original vector field and which corresponds to the so-called inner equation in singular perturbation theory.
dc.format.extent61 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística
dc.subject.lcshDifferential equations
dc.subject.lcshDifferentiable dynamical systems
dc.subject.otherExponentially small splitting
dc.subject.otherHopf-zero bifurcation
dc.subject.otherInner equation
dc.subject.otherStokes constant
dc.titleBreakdown of a 2D heteroclinic connection in the Hopf-zero singularity (II): The generic case
dc.typeArticle
dc.subject.lemacSistemes dinàmics diferenciables
dc.subject.lemacEquacions diferencials
dc.contributor.groupUniversitat Politècnica de Catalunya. SD - Sistemes Dinàmics de la UPC
dc.identifier.doi10.1007/s00332-018-9459-9
dc.description.peerreviewedPeer Reviewed
dc.subject.amsClassificació AMS::35 Partial differential equations
dc.subject.amsClassificació AMS::37 Dynamical systems and ergodic theory
dc.relation.publisherversionhttps://link.springer.com/article/10.1007%2Fs00332-018-9459-9
dc.rights.accessOpen Access
local.identifier.drac23192850
dc.description.versionPostprint (author's final draft)
local.citation.authorBaldoma, I.; Castejón, O.; Martinez-seara, Tere
local.citation.publicationNameJournal of nonlinear science
local.citation.volume28
local.citation.number4
local.citation.startingPage1489
local.citation.endingPage1549


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record