Mostra el registre d'ítem simple

dc.contributor.authorMohebian, Mohammad Reza
dc.contributor.authorMarateb, Hamid Reza
dc.contributor.authorKarimimehr, Saeed
dc.contributor.authorMañanas Villanueva, Miguel Ángel
dc.contributor.authorKranjec, Jernej
dc.contributor.authorHolobar, Ales
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
dc.date.accessioned2019-05-29T06:52:06Z
dc.date.available2019-05-29T06:52:06Z
dc.date.issued2019-04-01
dc.identifier.citationMohebian, M. [et al.]. Non-invasive decoding of the motoneurons: A guided source separation method based on convolution kernel compensation with clustered initial points. "Frontiers in computational neuroscience", 1 Abril 2019, vol. 13, p. 14-1-14-14.
dc.identifier.issn1662-5188
dc.identifier.urihttp://hdl.handle.net/2117/133614
dc.description.abstractDespite the progress in understanding of neural codes, the studies of the cortico-muscular coupling still largely rely on interferential electromyographic (EMG) signal or its rectification for the assessment of motor neuron pool behavior. This assessment is non-trivial and should be used with precaution. Direct analysis of neural codes by decomposing the EMG, also known as neural decoding, is an alternative to EMG amplitude estimation. In this study, we propose a fully-deterministic hybrid surface EMG (sEMG) decomposition approach that combines the advantages of both template-based and Blind Source Separation (BSS) decomposition approaches, a.k.a. guided source separation (GSS), to identify motor unit (MU) firing patterns. We use the single-pass density-based clustering algorithm to identify possible cluster representatives in different sEMG channels. These cluster representatives are then used as initial points of modified gradient Convolution Kernel Compensation (gCKC) algorithm. Afterwards, we use the Kalman filter to reduce the noise impact and increase convergence rate of MU filter identification by gCKC. Moreover, we designed an adaptive soft-thresholding method to identify MU firing times out of estimated MU spike trains. We tested the proposed algorithm on a set of synthetic sEMG signals with known MU firing patterns. A grid of 9 × 10 monopolar surface electrodes with 5-mm inter-electrode distances in both directions was simulated. Muscle excitation was set to 10, 30, and 50%. Colored Gaussian zero-mean noise with the signal-to-noise ratio (SNR) of 10, 20, and 30 dB, respectively, was added to 16 s long sEMG signals that were sampled at 4,096 Hz. Overall, 45 simulated signals were analyzed. Our decomposition approach was compared with gCKC algorithm. Overall, in our algorithm, the average numbers of identified MUs and Rate-of-Agreement (RoA) were 16.41 ± 4.18 MUs and 84.00 ± 0.06%, respectively, whereas the gCKC identified 12.10 ± 2.32 MUs with the average RoA of 90.78 ± 0.08%. Therefore, the proposed GSS method identified more MUs than the gCKC, with comparable performance. Its performance was dependent on the signal quality but not the signal complexity at different force levels. The proposed algorithm is a promising new offline tool in clinical neurophysiology
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Informàtica::Automàtica i control
dc.subject.lcshBiomedical engineering
dc.subject.lcshSignal processing
dc.titleNon-invasive decoding of the motoneurons: A guided source separation method based on convolution kernel compensation with clustered initial points
dc.typeArticle
dc.subject.lemacEnginyeria biomèdica
dc.subject.lemacTractament del senyal
dc.contributor.groupUniversitat Politècnica de Catalunya. BIOART - BIOsignal Analysis for Rehabilitation and Therapy
dc.identifier.doi10.3389/fncom.2019.00014
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://www.frontiersin.org/articles/10.3389/fncom.2019.00014/full
dc.rights.accessOpen Access
local.identifier.drac24251926
dc.description.versionPostprint (published version)
local.citation.authorMohebian, M.; Marateb, H.R.; Karimimehr, S.; Mañanas, M.A.; Kranjec, J.; Holobar, A.
local.citation.publicationNameFrontiers in computational neuroscience
local.citation.volume13
local.citation.startingPage14-1
local.citation.endingPage14-14


Fitxers d'aquest items

Thumbnail

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple