A machine learning approach to stock screening with fundamental analysis

View/Open
Cita com:
hdl:2117/133070
Document typeMaster thesis
Date2019-04-15
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
We present HPC.FASSR, a High-Performance Computation Fundamental Analysis Stock Screener and Ranker to compare many ML models and the criteria of famous Benjamin Graham for stock investing using fundamental data. FASSR is distributed so it can explore massive amounts of models in short time.
SubjectsMachine learning, High performance computing, Artificial intelligence, Aprenentatge automàtic, Càlcul intensiu (Informàtica), Intel·ligència artificial
DegreeMÀSTER UNIVERSITARI EN INNOVACIÓ I RECERCA EN INFORMÀTICA (Pla 2012)
Files | Description | Size | Format | View |
---|---|---|---|---|
138115.pdf | 2,077Mb | View/Open |