Show simple item record

dc.contributor.authorCors Iglesias, Josep Maria
dc.contributor.authorPalacián Subiela, Jesús Francisco
dc.contributor.authorYanguas Sayas, Patricia
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtiques
dc.identifier.citationCors, J.; Palacián, J.; Yanguas, P. On co-orbital quasi-periodic motion in the three-body problem. "SIAM journal on applied dynamical systems", 1 Gener 2019, vol. 18, núm. 1, p. 334-353.
dc.description.abstractWithin the framework of the planar three-body problem we establish the existence of quasi-periodic motions and KAM $4$-tori related to the co-orbital motion of two small moons about a large planet where the moons move in nearly circular orbits with almost equal radii. The approach is based on a combination of normal form and symplectic reduction theories and the application of a KAM theorem for high-order degenerate systems. To accomplish our results we need to expand the Hamiltonian of the three-body problem as a perturbation of two uncoupled Kepler problems. This approximation is valid in the region of phase space where co-orbital solutions occur.
dc.format.extent20 p.
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística
dc.subject.lcshThree-body problem
dc.subject.lcshCelestial mechanics
dc.subject.otherThree-body problem
dc.subject.otherSymplectic scaling
dc.subject.otherCo-orbital regime
dc.subject.other1:1 mean-motion resonance
dc.subject.otherNormalization and reduction
dc.subject.otherKAM theory for multiscale systems
dc.subject.otherQuasi-periodic motion and invariant 4-tori
dc.titleOn co-orbital quasi-periodic motion in the three-body problem
dc.subject.lemacProblema dels tres cossos
dc.subject.lemacMecànica celest
dc.description.peerreviewedPeer Reviewed
dc.subject.amsClassificació AMS::70 Mechanics of particles and systems::70F Dynamics of a system of particles, including celestial mechanics
dc.subject.amsClassificació AMS::70 Mechanics of particles and systems::70K Nonlinear dynamics
dc.subject.amsClassificació AMS::37 Dynamical systems and ergodic theory::37J Finite-dimensional Hamiltonian, Lagrangian, contact, and nonholonomic systems
dc.subject.amsClassificació AMS::37 Dynamical systems and ergodic theory::37N Applications
dc.rights.accessOpen Access
dc.description.versionPostprint (author's final draft)
upcommons.citation.authorCors, J.; Palacián, J.; Yanguas, P.
upcommons.citation.publicationNameSIAM journal on applied dynamical systems

Files in this item


This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder