Mostra el registre d'ítem simple

dc.contributor.authorBadia, Santiago
dc.contributor.authorMartín Huertas, Alberto Francisco
dc.contributor.authorOlm Serra, Marc
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental
dc.date.accessioned2019-05-07T22:12:34Z
dc.date.available2021-04-29T00:31:34Z
dc.date.issued2019-09
dc.identifier.citationBadia, S.; Martín, A. F.; Olm, M. Scalable solvers for complex electromagnetics problems. "Finite elements in analysis and design", Setembre 2019, vol. 161, p. 16-31.
dc.identifier.issn0168-874X
dc.identifier.otherhttps://arxiv.org/abs/1901.08783
dc.identifier.urihttp://hdl.handle.net/2117/132678
dc.description.abstractIn this work, we present scalable balancing domain decomposition by constraints methods for linear systems arising from arbitrary order edge finite element discretizations of multi-material and heterogeneous 3D problems. In order to enforce the continuity across subdomains of the method, we use a partition of the interface objects (edges and faces) into sub-objects determined by the variation of the physical coefficients of the problem. For multi-material problems, a constant coefficient condition is enough to define this sub-partition of the objects. For arbitrarily heterogeneous problems, a relaxed version of the method is defined, where we only require that the maximal contrast of the physical coefficient in each object is smaller than a predefined threshold. Besides, the addition of perturbation terms to the preconditioner is empirically shown to be effective in order to deal with the case where the two coefficients of the model problem jump simultaneously across the interface. The new method, in contrast to existing approaches for problems in curl-conforming spaces does not require spectral information whilst providing robustness with regard to coefficient jumps and heterogeneous materials. A detailed set of numerical experiments, which includes the application of the preconditioner to 3D realistic cases, shows excellent weak scalability properties of the implementation of the proposed algorithms.
dc.format.extent16 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Física::Electromagnetisme
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica::Mètodes en elements finits
dc.subject.lcshElectromagnetism--Mathematical models
dc.subject.otherFinite element method Maxwell equations Domain decomposition Electromagnetics Solvers
dc.titleScalable solvers for complex electromagnetics problems
dc.typeArticle
dc.subject.lemacElectromagnetisme -- Models matemàtics
dc.contributor.groupUniversitat Politècnica de Catalunya. ANiComp - Anàlisi numèrica i computació científica
dc.identifier.doi10.1016/j.finel.2019.04.003
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0168874X19300496
dc.rights.accessOpen Access
local.identifier.drac24471525
dc.description.versionPostprint (author's final draft)
local.citation.authorBadia, S.; Martín, A. F.; Olm, M.
local.citation.publicationNameFinite elements in analysis and design
local.citation.volume161
local.citation.startingPage16
local.citation.endingPage31


Fitxers d'aquest items

Thumbnail

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple