Show simple item record

dc.contributor.authorGardini, Laura
dc.contributor.authorMañosa Fernández, Víctor
dc.contributor.authorSushko, Iryna
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtiques
dc.date.accessioned2019-05-03T08:03:36Z
dc.date.available2020-04-30T00:25:32Z
dc.date.issued2019-04
dc.identifier.citationGardini, L.; Mañosa, V.; Sushko, I. A Route to chaos in the Boros–Moll map. "International journal of bifurcation and chaos", Abril 2019, vol. 29, núm. 4, p. 1930009-1-1930009-21.
dc.identifier.issn0218-1274
dc.identifier.urihttp://hdl.handle.net/2117/132567
dc.description.abstractThe Boros–Moll map appears as a subsystem of a Landen transformation associated to certain rational integrals and its dynamics is related to their convergence. In the paper, we study the dynamics of a one-parameter family of maps which unfold the Boros–Moll one, showing that the existence of an unbounded invariant chaotic region in the Boros–Moll map is a peculiar feature within the family. We relate this singularity with a specific property of the critical lines that occurs only for this special case. In particular, we explain how the unbounded chaotic region in the Boros–Moll map appears. We especially explain the main contact/homoclinic bifurcations that occur in the family. We also report some other bifurcation phenomena that appear in the considered unfolding.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Equacions diferencials i integrals::Sistemes dinàmics
dc.subject.lcshDifferentiable dynamical systems
dc.subject.lcshChaotic behavior in systems
dc.subject.otherBoros–Moll map
dc.subject.otherchaotic set
dc.subject.othercritical line
dc.subject.otherhomoclinic bifurcation
dc.subject.othernoninvertible planar map
dc.subject.othersnapback repellor
dc.titleA Route to chaos in the Boros–Moll map
dc.typeArticle
dc.subject.lemacSistemes dinàmics diferenciables
dc.subject.lemacCaos (Teoria de sistemes)
dc.contributor.groupUniversitat Politècnica de Catalunya. CoDAlab - Control, Modelització, Identificació i Aplicacions
dc.identifier.doi10.1142/S021812741930009X
dc.description.peerreviewedPeer Reviewed
dc.subject.amsClassificació AMS::37 Dynamical systems and ergodic theory::37D Dynamical systems with hyperbolic behavior
dc.subject.amsClassificació AMS::37 Dynamical systems and ergodic theory::37G Local and nonlocal bifurcation theory
dc.relation.publisherversionhttps://www.worldscientific.com/doi/abs/10.1142/S021812741930009X
dc.rights.accessOpen Access
local.identifier.drac24259542
dc.description.versionPostprint (author's final draft)
dc.relation.projectidinfo:eu-repo/grantAgreement/MINECO/1PE/DPI2016-77407-P
local.citation.authorGardini, L.; Mañosa, V.; Sushko, I.
local.citation.publicationNameInternational journal of bifurcation and chaos
local.citation.volume29
local.citation.number4
local.citation.startingPage1930009-1
local.citation.endingPage1930009-21


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder