Show simple item record

dc.contributor.authorLehmkuhl, Oriol
dc.contributor.authorHouzeaux, Guillaume
dc.contributor.authorOwen, Herbert
dc.contributor.authorChrysokentis, Giorgios
dc.contributor.authorRodríguez Pérez, Ivette María
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Màquines i Motors Tèrmics
dc.date.accessioned2019-04-29T14:39:09Z
dc.date.issued2019-08-01
dc.identifier.citationLehmkuhl, O. [et al.]. A low-dissipation finite element scheme for scale resolving simulations of turbulent flows. "Journal of computational physics", 1 Agost 2019, vol. 390, p. 51-65.
dc.identifier.issn0021-9991
dc.identifier.urihttp://hdl.handle.net/2117/132321
dc.description.abstractThe present work extends the conservative convective scheme proposed by Charnyi et al. (2017) [13], originally formulated for mixed finite elements and tested in laminar flows, to equal order finite elements. A non-incremental fractional-step method is used to stabilise pressure, allowing the use of finite element pairs that do not satisfy the inf-sup conditions, such as equal order interpolation for the velocity and pressure used in this work. The final scheme preserves momentum and angular momentum at the discrete level; the error in the conservation of kinetic energy introduced by this stabilisation is of O (dt,h^2) in the case of linear finite elements. The low dissipation strategy is tested on a set of relevant turbulent cases. First, by using direct numerical simulation on the inviscid and viscous Taylor-Green vortex problem at Re =1600 and later, coupled with the Vreman (2004) [25]sub-grid stress model for performing large-eddy simulations on a turbulent channel flow at Ret=950, the flow past a sphere at ReD=10^4 and the flow around an Ahmed body at ReH=2 ×10^5. In all cases the performance of the presented formulation is fairly good and it has been capable of reproducing the reference results with good accuracy.
dc.format.extent15 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Enginyeria mecànica::Mecànica de fluids
dc.subject.lcshTurbulence--Computer simulation
dc.subject.lcshEddies
dc.subject.lcshFinite element method
dc.subject.otherFinite elements
dc.subject.otherLow-dissipation schemes
dc.subject.otherTurbulent flows
dc.subject.otherLarge-eddy simulation
dc.subject.otherDirect numerical simulation
dc.titleA low-dissipation finite element scheme for scale resolving simulations of turbulent flows
dc.typeArticle
dc.subject.lemacTurbulència -- Simulació numèrica
dc.subject.lemacRemolins (Mecànica de fluids)
dc.subject.lemacElements finits, Mètode dels
dc.contributor.groupUniversitat Politècnica de Catalunya. TUAREG - Turbulence and Aerodynamics in Mechanical and Aerospace Engineering Research Group
dc.identifier.doi10.1016/j.jcp.2019.04.004
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0021999119302372
dc.rights.accessRestricted access - publisher's policy
drac.iddocument24250735
dc.description.versionPostprint (published version)
dc.relation.projectidinfo:eu-repo/grantAgreement/MINECO/2PE/TRA2017-88508-R
dc.relation.projectidinfo:eu-repo/grantAgreement/MICINN/2PE/FI-2017-2-0012
dc.relation.projectidinfo:eu-repo/grantAgreement/MICINN/2PE/FI-2017-3-0018
dc.date.lift2021-05-01
upcommons.citation.authorLehmkuhl, O.; Houzeaux, G.; Owen, H.; Chrysokentis, G.; Rodriguez, I.
upcommons.citation.publishedtrue
upcommons.citation.publicationNameJournal of computational physics
upcommons.citation.volume390
upcommons.citation.startingPage51
upcommons.citation.endingPage65


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 3.0 Spain