Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
61.613 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Ciències de la Computació
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Ciències de la Computació
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Measuring satisfaction and power in influence based decision systems

Thumbnail
View/Open
measuring satisfaction and power.pdf (333,2Kb)
 
10.1016/j.knosys.2019.03.005
 
  View Usage Statistics
  LA Referencia / Recolecta stats
Cita com:
hdl:2117/132016

Show full item record
Molinero Albareda, XavierMés informacióMés informacióMés informació
Riquelme Csori, Fabián
Serna Iglesias, María JoséMés informacióMés informacióMés informació
Document typeArticle
Defense date2019-06-15
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
We introduce collective decision-making models associated with influence spread under the linear threshold model in social networks. We define the oblivious and the non-oblivious influence models. We also introduce the generalized opinion leader–follower model (gOLF) as an extension of the opinion leader–follower model (OLF) proposed by van den Brink et al. (2011). In our model we allow rules for the final decision different from the simple majority used in OLF. We show that gOLF models are non-oblivious influence models on a two-layered bipartite influence digraph. Together with OLF models, the satisfaction and the power measures were introduced and studied. We analyze the computational complexity of those measures for the decision models introduced in the paper. We show that the problem of computing the satisfaction or the power measure is #P-hard in all the introduced models even when the subjacent social network is a bipartite graph. Complementing this result, we provide two subfamilies of decision models in which both measures can be computed in polynomial time. We show that the collective decision functions are monotone and therefore they define an associated simple game. We relate the satisfaction and the power measures with the Rae index and the Banzhaf value of an associated simple game. This will allow the use of known approximation methods for computing the Banzhaf value, or the Rae index to their practical computation.
CitationMolinero, X.; Riquelme, F.; Serna, M. Measuring satisfaction and power in influence based decision systems. "Knowledge-based systems", 15 Juny 2019, vol. 174, p. 144-159. 
URIhttp://hdl.handle.net/2117/132016
DOI10.1016/j.knosys.2019.03.005
ISSN0950-7051
Publisher versionhttps://www.sciencedirect.com/science/article/abs/pii/S095070511930108X
Collections
  • Departament de Ciències de la Computació - Articles de revista [996]
  • Departament de Matemàtiques - Articles de revista [3.099]
  • ALBCOM - Algorismia, Bioinformàtica, Complexitat i Mètodes Formals - Articles de revista [245]
  • GRTJ - Grup de Recerca en Teoria de Jocs - Articles de revista [110]
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
measuring satisfaction and power.pdf333,2KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina