A simulation strategy for the atomistic modeling of flexible molecules covalently tethered to rigid surfaces: application to peptides
View/Open
A simulation strategy for the atomistic modeling of flexible molecules ....pdf (1,386Mb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Document typeArticle
Defense date2011-03
Rights accessRestricted access - publisher's policy
Abstract
A computational strategy to model flexible molecules tethered to a rigid inert surface is presented. The strategy is able to provide uncorrelated relaxed microstructures at the atomistic level. It combines an algorithm to generate molecules tethered to the surface without atomic overlaps, a method to insert solvent molecules and ions in the simulation box, and a powerful relaxation procedure. The reliability of the strategy has been investigated by simulating
two different systems: (i) mixed monolayers consisting of binary mixtures of long-chain alkyl thiols of different lengths adsorbed on a rigid inert surface and (ii) CREKA (Cys-Arg-Glu-Lys-Ala), a short linear pentapeptide that recognizes clotted plasma proteins and selectively homes to tumors, covalently tethered to a rigid inert surface
in aqueous solution. In the first, we examined the segregation of the two species in the monolayers using different
long-chain:short-chain ratios, whereas in the second, we explored the conformational space of CREKA and ions distribution
considering densities of peptides per nm2 ranging from 0.03 to 1.67. Results indicate a spontaneous segregation in alkyl thiol monolayers, which enhances when the concentration of longest chains increases. However, the whole conformational profile of CREKA depends on the number of molecules tethered to the surface pointing out the large influence of molecular density on the intermolecular interactions, even though the bioactive conformation was found as the most stable in all cases.
CitationCurcó, D. [et al.]. A simulation strategy for the atomistic modeling of flexible molecules covalently tethered to rigid surfaces: application to peptides. "Journal of computational chemistry", Març 2011, vol. 32, núm. 4, p. 607-619.
ISSN0192-8651
Files | Description | Size | Format | View |
---|---|---|---|---|
A simulation st ... flexible molecules ....pdf![]() | 1,386Mb | Restricted access |
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder