Multiscale simulation of fracture of braided composites via repetitive unit cells
View/Open
Multiscale simulation of fracture of braided composites...pdf (1,725Mb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/13154
Document typeArticle
Defense date2011-04
Rights accessRestricted access - publisher's policy
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
Two-dimensional triaxially braided composites (2DTBCs) are attractive in crashworthiness design because their fracture can dissipate a significantly larger amount of impact energy than other light-weight materials. This paper aims at predicting the fracture energy, Gf, and the effective length of the fracture process zone, cf, of 2DTBC composites. Since the
fracture parameters are best manifested in the scaling properties and are the main parameters in the size effect law, the nominal strengths of three geometrically similar notched beams of three different sizes are simulated in a 3D finite element framework. The simulations are run for three different bias tow angles: 30º, 45º and 60º. Continuum beam elements in front of the notch are replaced with repetitive unit cells (RUCs), which represent the 2DTBC’s mesostructure, and are located in the region of potential cracking. Multiscale simulations, incorporating damage mechanics, are used to predict the pre- and
post-peak response from three-point bending tests. Nominal stresses are calculated from
the predicted peak loads and used to fit the size effect law. The dimensionless energy
release rate function g(a) is determined from the J-integral. The values of Gf and cf are then determined using g(a) and the size effect law. With some exceptions, the results in general match well with the results of size effect experiments, and particularly the strong size effect observed in the tests.
CitationŠmilauer, V. [et al.]. Multiscale simulation of fracture of braided composites via repetitive unit cells. "Engineering fracture mechanics", Abril 2011, vol. 78, núm. 6, p. 901-918.
ISSN0013-7944
Collections
Files | Description | Size | Format | View |
---|---|---|---|---|
Multiscale simu ... f braided composites...pdf | 1,725Mb | Restricted access |