Voltage recovery influence on three-phase grid-connected inverters under voltage sags

View/Open
Cita com:
hdl:2117/131082
Document typeArticle
Defense date2019-02-12
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
Faults in power systems cause voltage sags, which, in turn, provoke large current peaks in grid-connected equipment. Then, a complete knowledge of the inverter behaviour is needed to meet fault ride-through capability. The aim of this paper is to propose a mathematical model that describes the behaviour of the currents that a three-phase inverter with RL filter inject to a faulty grid with symmetrical and unsymmetrical voltage sags. The voltage recovery process is considered, i.e., the fault is assumed to be cleared in the successive zero-cross instants of the fault current. It gives rise to a voltage recovery in different steps (discrete voltage sag), which differs from the usual model in the literature, where the voltage recovers instantaneously (abrupt voltage sag). The analytical model shows that the fault-clearing process has a strong influence on the injected currents. Different sag durations and depths have also been considered, showing that there exist critical values for these magnitudes, which provoke the highest current peaks. The analytical study is validated through simulations in MATLAB and through experimental results
CitationRolan, A. [et al.]. Voltage recovery influence on three-phase grid-connected inverters under voltage sags. "IET generation, transmission and distribution", 12 Febrer 2019, vol. 13, núm. 3, p. 435-443.
ISSN1751-8687
Files | Description | Size | Format | View |
---|---|---|---|---|
Voltage1.pdf | ARTICLE | 1,965Mb | View/Open |