Show simple item record

dc.contributor.authorBennacer Seghouani, Nacéra
dc.contributor.authorBugiotti, Francesca
dc.contributor.authorHewasinghage, Moditha Lakshan Dharmasir
dc.contributor.authorIsaj, Suela
dc.contributor.authorQuercini, Gianluca
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria de Serveis i Sistemes d'Informació
dc.date.accessioned2019-03-21T10:13:45Z
dc.date.available2019-03-21T10:13:45Z
dc.date.issued2018-06-01
dc.identifier.citationBennacer, N. [et al.]. A frequent named entities-based approach for interpreting reputation in Twitter. "Data Science and Engineering", 1 Juny 2018, vol. 3, núm. 2, p. 86-100.
dc.identifier.issn2364-1541
dc.identifier.otherhttps://hal.inria.fr/hal-01816523
dc.identifier.urihttp://hdl.handle.net/2117/130691
dc.description.abstractTwitter is a social network that provides a powerful source of data. The analysis of those data offers many challenges among those stands out the opportunity to find reputation of a product, a person or any other entity of interest. Several approaches for sentiment analysis have been proposed in the literature to assess the general opinion expressed in tweets on an entity. Nevertheless, these methods aggregate sentiment scores retrieved from tweets, which is a static view to evaluate the overall reputation of an entity. The reputation of an entity is not static; entities collaborate with each other, and they get involved in different events over time. A simple aggregation of sentiment scores is then not sufficient to represent this dynamism. In this paper, we present a new approach to determine the reputation of an entity on the basis of the set of events in which it is involved. To achieve this, we propose a new sampling method driven by a tweet weighting measure to give a better quality and summary of the target entity. We introduce the concept of Frequent Named Entities to determine the events involving the target entity. Our evaluation achieved for different entities shows that 90% of the reputation of an entity originates from the events it is involved in and the breakdown into events allows interpreting the reputation in a transparent and self-explanatory way.
dc.format.extent15 p.
dc.language.isoeng
dc.rightsAttribution 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Informàtica::Sistemes d'informació
dc.subject.lcshReputation
dc.subject.otherReputation
dc.subject.otherNamed entities
dc.subject.otherFrequent itemsets
dc.subject.otherSampling
dc.subject.otherTwitter
dc.subject.otherOpinion mining
dc.titleA frequent named entities-based approach for interpreting reputation in Twitter
dc.typeArticle
dc.subject.lemacReputació
dc.contributor.groupUniversitat Politècnica de Catalunya. inSSIDE - integrated Software, Service, Information and Data Engineering
dc.identifier.doi10.1007/s41019-018-0066-4
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://link.springer.com/article/10.1007%2Fs41019-018-0066-4
dc.rights.accessOpen Access
local.identifier.drac24006021
dc.description.versionPostprint (published version)
local.citation.authorBennacer, N.; Bugiotti, F.; Hewasinghage, M.; Isaj, S.; Quercini, G.
local.citation.publicationNameData Science and Engineering
local.citation.volume3
local.citation.number2
local.citation.startingPage86
local.citation.endingPage100


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record