Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.567 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Ciències de la Computació
  • Ponències/Comunicacions de congressos
  • View Item
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Ciències de la Computació
  • Ponències/Comunicacions de congressos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Classification, dimensionality reduction, and maximally discriminatory visualization of a multicentre 1H-MRS database of brain tumors

Thumbnail
View/Open
Article (174,6Kb)
Share:
 
 
10.1109/ICMLA.2008.20
 
  View Usage Statistics
Cita com:
hdl:2117/13068

Show full item record
Lisboa, Paulo J.G.
Romero Merino, EnriqueMés informacióMés informacióMés informació
Vellido Alcacena, AlfredoMés informacióMés informacióMés informació
Julià Sapé, Margarida
Arús, Carles
Document typeConference report
Defense date2008
PublisherIEEE
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
The combination of an Artificial Neural Network classifier, a feature selection process, and a novel linear dimensionality reduction technique that provides a data projection for visualization and which preserves completely the class discrimination achieved by the classifier, is applied in this study to the analysis of an international, multi-centre 1H-MRS database of brain tumors. This combination yields results that are both intuitively interpretable and very accurate. The method as a whole remains simple enough as to allow its easy integration in existing medical decision support systems.
CitationLisboa, P. [et al.]. Classification, dimensionality reduction, and maximally discriminatory visualization of a multicentre 1H-MRS database of brain tumors. A: IEEE International Conference on Machine Learning and Applications. "7th IEEE International Conference on Machine Learning and Applications". San Diego, California: IEEE, 2008, p. 613-618. 
URIhttp://hdl.handle.net/2117/13068
DOI10.1109/ICMLA.2008.20
Publisher versionhttp://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=4725038&queryText%3DClassification%2C+Dimensionality+Reduction%2C+and+Maximally+Discriminatory%26openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All
Collections
  • Departament de Ciències de la Computació - Ponències/Comunicacions de congressos [1.229]
  • SOCO - Soft Computing - Ponències/Comunicacions de congressos [110]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
04725038.pdfArticle174,6KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Cookies policy
  • Inici de la pàgina